[22] Igor Dolgachev and Valery Lunts. “A Character Formula for the Representation of a Weyl Group in the Cohomology of the Associated Toric Variety”. In: J. Algebra 168 (1994), pp. 741-772.
[23] Vladimir G. Drinfeld. “On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)”. In: St. Petersburg Math. J. 2.4 (1991), pp. 829-860. Orig. pub. in Russian in: Algebra i Analiz 2.4 (1990), pp. 149-181.
[24] Clément Dupont. “Purity, Formality, and Arrangement Complements”. In: Int. Math. Res. Not. 2016.13 (2016), pp. 4132-4144. doi: 10.1093/imrn/rnv260.
[25] Pavel Etingof et al. “The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points”. In: Annals of Math. 171.2 (2010), pp. 731-777.
[26] Eva Maria Feichtner and Bernd Sturmfels. “Matroid polytopes, nested sets and Bergman fans”. In: Portugaliae Mathematica, Nova Série 62.4 (2005), pp. 437-468.
[27] Eva Maria Feichtner and Sergey Yuzvinsky. “Chow rings of toric varieties defined by atomic lattices”. In: Invent. math. 155.3 (2004), pp. 515- 536.
[28] Dominique Foata and Guo-Niu Han. “Fix-mahonian calculus III; a quadruple distribution”. In: Monatsh. Math. 154 (2008), pp. 177-197. doi: 10.1007/s00605-007-0512-2.
[29] Giovanni Gaiffi. “Blowups and cohomology bases for De Concini-Procesi models of subspace arrangements”. In: Selecta Mathematica, New Series 3.3 (1997), pp. 315-333. doi: 10.1007/s000290050013.
[30] Ira M. Gessel. “A Coloring Problem”. In: Amer. Math. Monthly 98.6 (1991), pp. 530-533.
[31] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley, 1978.
[32] Anthony Henderson. “Representations of wreath products on cohomology of De Concini-Procesi compactifications”. In: Int. Math. Res. Not. 2004.20 (2004), pp. 983-1021. doi: 10.1155/S1073792804132510.
[33] Li Li. “Wonderful compactification of an arrangement of subvarieties”. In: Michigan Math. Jour. 58.2 (2009), pp. 535-563.
[34] Eduard Looijenga. “Cohomology of M3 and M13”. In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces. Ed. by Carl-Friedrich Bödigheimer and Richard M. Hain. Vol. 150. Contemp. Math. Amer. Math. Soc., Providence, RI, 1993, pp. 205-228. doi: 10.1090/conm/150/01292.
[35] Robert MacPherson and Claudio Procesi. “Making conical compactification wonderful”. In: Selecta Mathematica, New Series 4.1 (1998), pp. 125-139.
[36] Yuri I. Manin. “Generating Functions in Algebraic Geometry and Sums Over Trees”. In: The Moduli Space of Curves. Ed. by Robbert H. Dijkgraaf, Carel F. Faber, and Gerard B. M. van der Geer. Birkhäuser Boston, 1995, pp. 401-417.
[37] Luca Moci. “Combinatorics and topology of toric arrangements defined by root systems”. In: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 19.4 (2008), pp. 293-308. doi: 10.4171/RLM/526.
[38] Luca Moci. “A Tutte polynomial for toric arrangements”. In: Trans. Amer. Math. Soc. 364.2 (2012), pp. 1067-1088. doi: 10.1090/S0002-9947-2011-05491-7.
[39] Luca Moci and Roberto Pagaria. “On the cohomology of arrangements of subtori”. In: J. London Math. Soc. (2022). doi: 10.1112/jlms.12616.
[40] Roberto Pagaria. “Two examples of toric arrangements”. In: J. Combin. Theory, Series A 167 (2019), pp. 389-402. doi: 10.1016/j.jcta.2019.05.006.
[41] Oscar Papini. “Computational Aspects of Line and Toric Arrangements”. PhD thesis. Università di Pisa, 2018. url: https://etd.adm.unipi.it/t/etd-09262018
[42] Claudio Procesi. “The toric variety associated to Weyl chambers”. In: Mots: mélanges offerts à M.-P. Schützenberger. Ed. by M. Lothaire. Lang. Raison. Calc. Hermès Science, 1990, pp. 153-161.
[43] Eric M. Rains. “The homology of real subspace arrangements”. In: Jour. of Topology 3.4 (2010), pp. 786-818.
[44] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0). 2020. url: https://www.sagemath.org.
[45] Richard P. Stanley. “Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry”. In: Annals of the New York Academy of Sciences 576 (1989), pp. 500-535. doi: 10.1111/j.1749-6632.1989.tb16434.x.
[46] Richard P. Stanley. Enumerative Combinatorics, Vol. 1. Second Edition. Cambridge University Press, 2011.
[47] John R. Stembridge. “Eulerian numbers, tableaux, and the Betti numbers of a toric variety”. In: Discrete Math. 99.1-3 (1992), pp. 307-320.
[48] Sergey Yuzvinsky. “Cohomology bases for the De Concini-Procesi models of hyperplane arrangements and sums over trees”. In: Invent. Math. 127.2 (1997), pp. 319-335. doi: 10.1007/s002220050122.