2024
Journal article  Open Access

A basis for the cohomology of compact models of toric arrangements

Gaiffi G, Papini O., Siconolfi V.

Eulerian numbers  Configuration spaces  Compact models  Mathematics - Algebraic Topology  FOS: Mathematics  Toric arrangements  Algebraic Topology (math.AT)  Mathematics - Combinatorics  Combinatorics (math.CO) 

In this paper we find monomial bases for the integer cohomology rings of compact wonderful models of toric arrangements. In the description of the monomials various combinatorial objects come into play: building sets, nested sets, and the fan of a suitable toric variety. We provide some examples computed via a SageMath program and then we focus on the case of the toric arrangements associated with root systems of type A. Here the combinatorial description of our basis offers a geometrical point of view on the relation between some Eulerian statistics on the symmetric group.

Source: PURE AND APPLIED MATHEMATICS QUARTERLY, vol. 20 (issue 1), pp. 427-470


[22] Igor Dolgachev and Valery Lunts. “A Character Formula for the Representation of a Weyl Group in the Cohomology of the Associated Toric Variety”. In: J. Algebra 168 (1994), pp. 741-772.
[23] Vladimir G. Drinfeld. “On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q)”. In: St. Petersburg Math. J. 2.4 (1991), pp. 829-860. Orig. pub. in Russian in: Algebra i Analiz 2.4 (1990), pp. 149-181.
[24] Clément Dupont. “Purity, Formality, and Arrangement Complements”. In: Int. Math. Res. Not. 2016.13 (2016), pp. 4132-4144. doi: 10.1093/imrn/rnv260.
[25] Pavel Etingof et al. “The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points”. In: Annals of Math. 171.2 (2010), pp. 731-777.
[26] Eva Maria Feichtner and Bernd Sturmfels. “Matroid polytopes, nested sets and Bergman fans”. In: Portugaliae Mathematica, Nova Série 62.4 (2005), pp. 437-468.
[27] Eva Maria Feichtner and Sergey Yuzvinsky. “Chow rings of toric varieties defined by atomic lattices”. In: Invent. math. 155.3 (2004), pp. 515- 536.
[28] Dominique Foata and Guo-Niu Han. “Fix-mahonian calculus III; a quadruple distribution”. In: Monatsh. Math. 154 (2008), pp. 177-197. doi: 10.1007/s00605-007-0512-2.
[29] Giovanni Gaiffi. “Blowups and cohomology bases for De Concini-Procesi models of subspace arrangements”. In: Selecta Mathematica, New Series 3.3 (1997), pp. 315-333. doi: 10.1007/s000290050013.
[30] Ira M. Gessel. “A Coloring Problem”. In: Amer. Math. Monthly 98.6 (1991), pp. 530-533.
[31] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley, 1978.
[32] Anthony Henderson. “Representations of wreath products on cohomology of De Concini-Procesi compactifications”. In: Int. Math. Res. Not. 2004.20 (2004), pp. 983-1021. doi: 10.1155/S1073792804132510.
[33] Li Li. “Wonderful compactification of an arrangement of subvarieties”. In: Michigan Math. Jour. 58.2 (2009), pp. 535-563.
[34] Eduard Looijenga. “Cohomology of M3 and M13”. In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces. Ed. by Carl-Friedrich Bödigheimer and Richard M. Hain. Vol. 150. Contemp. Math. Amer. Math. Soc., Providence, RI, 1993, pp. 205-228. doi: 10.1090/conm/150/01292.
[35] Robert MacPherson and Claudio Procesi. “Making conical compactification wonderful”. In: Selecta Mathematica, New Series 4.1 (1998), pp. 125-139.
[36] Yuri I. Manin. “Generating Functions in Algebraic Geometry and Sums Over Trees”. In: The Moduli Space of Curves. Ed. by Robbert H. Dijkgraaf, Carel F. Faber, and Gerard B. M. van der Geer. Birkhäuser Boston, 1995, pp. 401-417.
[37] Luca Moci. “Combinatorics and topology of toric arrangements defined by root systems”. In: Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 19.4 (2008), pp. 293-308. doi: 10.4171/RLM/526.
[38] Luca Moci. “A Tutte polynomial for toric arrangements”. In: Trans. Amer. Math. Soc. 364.2 (2012), pp. 1067-1088. doi: 10.1090/S0002-9947-2011-05491-7.
[39] Luca Moci and Roberto Pagaria. “On the cohomology of arrangements of subtori”. In: J. London Math. Soc. (2022). doi: 10.1112/jlms.12616.
[40] Roberto Pagaria. “Two examples of toric arrangements”. In: J. Combin. Theory, Series A 167 (2019), pp. 389-402. doi: 10.1016/j.jcta.2019.05.006.
[41] Oscar Papini. “Computational Aspects of Line and Toric Arrangements”. PhD thesis. Università di Pisa, 2018. url: https://etd.adm.unipi.it/t/etd-09262018
[42] Claudio Procesi. “The toric variety associated to Weyl chambers”. In: Mots: mélanges offerts à M.-P. Schützenberger. Ed. by M. Lothaire. Lang. Raison. Calc. Hermès Science, 1990, pp. 153-161.
[43] Eric M. Rains. “The homology of real subspace arrangements”. In: Jour. of Topology 3.4 (2010), pp. 786-818.
[44] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0). 2020. url: https://www.sagemath.org.
[45] Richard P. Stanley. “Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry”. In: Annals of the New York Academy of Sciences 576 (1989), pp. 500-535. doi: 10.1111/j.1749-6632.1989.tb16434.x.
[46] Richard P. Stanley. Enumerative Combinatorics, Vol. 1. Second Edition. Cambridge University Press, 2011.
[47] John R. Stembridge. “Eulerian numbers, tableaux, and the Betti numbers of a toric variety”. In: Discrete Math. 99.1-3 (1992), pp. 307-320.
[48] Sergey Yuzvinsky. “Cohomology bases for the De Concini-Procesi models of hyperplane arrangements and sums over trees”. In: Invent. Math. 127.2 (1997), pp. 319-335. doi: 10.1007/s002220050122.

Metrics



Back to previous page
BibTeX entry
@article{oai:iris.cnr.it:20.500.14243/501381,
	title = {A basis for the cohomology of compact models of toric arrangements},
	author = {Gaiffi G and Papini O. and Siconolfi V.},
	doi = {10.4310/pamq.2024.v20.n1.a9 and 10.48550/arxiv.2205.00443},
	year = {2024}
}