2018
Journal article  Open Access

Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion

D'Ovidio M., Vitali S., Sposini V., Sliusarenko O., Paradisi P., Castellani G., Pagnini G.

Mathematical Physics (math-ph)  superposition  FOS: Mathematics  Statistical Mechanics (cond-mat.stat-mech)  FOS: Physical sciences  heterogeneous ensemble  center of mass  Ornstein-Uhlenbeck proce  Center of mass  Mathematics - Probability  generalized grey Brownian motion  Condensed Matter - Statistical Mechanics  anomalous diffusion  Ornstein-Uhlenbeck process  Analysi  Mathematical Physics  non-autonomous stochastic differential equation  randomly-scaled Gaussian proce  fractional diffusion  center of ma  Probability (math.PR)  Analysis  Ornstein–Uhlenbeck process  Applied Mathematics  randomly-scaled Gaussian process 

We consider an ensemble of Ornstein-Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding to this ensemble is statistically equivalent to a process driven by a non-autonomous stochastic differential equation with time-dependent drift and a white noise. In particular, the time scaling and the density function of such variable are driven by the population of timescales and of noise amplitudes, respectively. Moreover, we show that this variable is equivalent in distribution to a randomly-scaled Gaussian process, i.e., a process built by the product of a Gaussian process times a non-negative independent random variable. This last result establishes a connection with the so-called generalized grey Brownian motion and suggests application to model fractional anomalous diffusion in biological systems.

Source: Fractional Calculus & Applied Analysis (Print) 21 (2018): 1420–1435. doi:10.1515/fca-2018-0074

Publisher: Bulgarian Academy of Sciences. Institute of Mathematics and Informatics, Sofia , Bulgaria


[1] M. Csorgo}, Z. Y. Lin, On moduli of continuity for Gaussian and l2-norm squared processes generated by Ornstein{Uhlenbeck processes, Canad. J. Math. 42 (1990) 141{158.
[2] Z. Y. Lin, On large increments of in nite series of Ornstein{Uhlenbeck processes, Stoch. Process. Appl. 60 (1995) 161{169.
[3] N. Leonenko, E. Taufer, Convergence of integrated superpositions of Ornstein{Uhlenbeck processes to fractional Brownian motion, Stochastics 77 (6) (2005) 477{499.
[4] O. E. Barndor {Nielsen, N. N. Leonenko, Spectral properties of superpositions of Ornstein{Uhlenbeck type processes, Methodol. Comput. Appl. Probab. 7 (2005) 335{352.
[5] D. Grahovac, N. N. Leonenko, A. Sikorskii, I. Tesnjak, Intermittency of superpositions of Ornstein{Uhlenbeck type processes, J. Stat. Phys. 165 (2016) 390{408.
[6] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Di usion to Time Series Analysis, Lambert Academic Publishing, 2011, Ph.D. Thesis, Physics Department, University of Bologna, 2008.
[7] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous di usion, J. Phys. A: Math. Theor. 41 (2008) 285003.
[8] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous di usion in physics, Integr. Transf. Spec. F. 20 (3{4) (2009) 185{198.
[9] M. Grothaus, F. Jahnert, F. Riemann, J. L. da Silva, Mittag{Le er analysis I: Construction and characterization, J. Funct. Anal. 268 (2015) 1876{1903.
[10] M. Grothaus, F. Jahnert, Mittag{Le er analysis II: Application to the fractional heat equation, J. Funct. Anal. 270 (2016) 2732{2768.
[11] R. Klages, G. Radons, I. M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley{VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[12] J. Klafter, S.-C. Lim, R. Metzler, Fractional Dynamics: Recent Advances, World Scienti c, Singapore, 2011.
[13] Y. Meroz, I. M. Sokolov, A Toolbox for Determining Subdi usive Mechanisms, Phys. Rep. 573 (2015) 1{29.
[14] R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes, J. Phys. A: Math. Theor. 37 (31) (2004) R161{ R208.
[15] S. Gheorghiu, M.-O. Coppens, Heterogeneity explains features of "anomalous" thermodynamics and statistics, Proc. Natl. Acad. Sci. USA 101 (2004) 15852{15856.
[16] D. Molina-Garc a, T. Minh Pham, P. Paradisi, C. Manzo, G. Pagnini, Fractional kinetics emerging from ergodicity breaking in random media, Phys. Rev. E 94 (2016) 052147.
[17] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, R. Metzler, Random di usivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian di usion, New J. Phys. 20 (2018) 043044.
[18] F. E. Benth, B. Rudiger, A. Suss, Ornstein{Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility, Stoch. Process. Appl. 128 (2018) 461{486.
[19] O. Garet, Asymptotic behaviour of Gaussian processes with integral representation, Stoch. Process. Appl. 89 (2000) 287{303.
[20] G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional di usion equation, Fract. Calc. Appl. Anal. 19 (2) (2016) 408{440.
[21] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional di usion equation, Fract. Calc. Appl. Anal. 4 (2) (2001) 153{192.
[22] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional di usion processes: A tutorial survey, Int. J. Di er. Equations 2010 (2010) 104505.
[23] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional di usion processes, Fract. Calc. Appl. Anal. 16 (2) (2013) 436{453.
[24] G. Pagnini, Erdelyi{Kober fractional di usion, Fract. Calc. Appl. Anal. 15 (1) (2012) 117{127.
[25] G. Pagnini, Short note on the emergence of fractional kinetics, Physica A 409 (2014) 29{34.
[26] F. Ho ing, T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76 (2013) 046602.
[27] R. Mayor, S. Etienne-Manneville, The front and rear of collective cell migration, Nat. Rev. Mol. Cell Biol. 17 (2016) 97{109.
[28] B. M. Regner, D. Vucinic, C. Domnisoru, T. M. Bartol, M. W. Hetzer, D. M. Tartakovsky, T. J. Sejnowski, Anomalous di usion of single particles in cytoplasm, Biophys. J. 104 (2013) 1652{1660.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:401213,
	title = {Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion},
	author = {D'Ovidio M. and Vitali S. and Sposini V. and Sliusarenko O. and Paradisi P. and Castellani G. and Pagnini G.},
	publisher = {Bulgarian Academy of Sciences. Institute of Mathematics and Informatics, Sofia , Bulgaria},
	doi = {10.1515/fca-2018-0074 and 10.48550/arxiv.1806.11351},
	journal = {Fractional Calculus \& Applied Analysis (Print)},
	volume = {21},
	pages = {1420–1435},
	year = {2018}
}