[1] McCallum A. Information extraction: distilling structured data from unstructured text. Queue 2005;3(9):48-57.
[2] Sarawagi S. Information extraction. Found Trends Databases 2008;1(3):261-377.
[3] Uzuner Ö, Luo Y, Szolovits P. Evaluating the state of the art in automatic deidentification. J Am Med Inform Assoc 2007;14(5):550-63.
[4] Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th international conference on machine learning (ICML 2001), Williamstown, USA; 2001. p. 282-9.
[5] Sutton C, McCallum A. An introduction to conditional random fields for relational learning. In: Getoor L, Taskar B, editors. Introduction to statistical relational learning. Cambridge (USA): The MIT Press; 2007. p. 93-127.
[6] Sutton C, McCallum A. An introduction to conditional random fields. Found Trends Mach Learn 2012;4(4):267-373.
[7] Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts assertions and relations in clinical text. J Am Med Inform Assoc 2011;18(5):552-6.
[8] Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010;17(5):514-8.
[9] Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, et al. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc 2011;18(5):601-6.
[10] Jonnalagadda S, Cohen T, Wu S, Gonzalez G. Enhancing clinical concept extraction with distributional semantics. J Biomed Inform 2012;45(1):129-40.
[11] Patrick J, Li M. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J Am Med Inform Assoc 2010;17:524-7.
[12] Torii M, Wagholikar K, Liu H. Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Inform Assoc 2011;18(5):580-7.
[13] Roli F, Giacinto G, Vernazza G. Methods for designing multiple classifier systems. In: Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK; 2001. p. 78-87.
[14] Esuli A, Sebastiani F. Evaluating information extraction. In: Proceedings of the conference on multilingual and multimodal information access evaluation (CLEF 2010), Padova, Italy; 2010. p. 100-11.
[15] Suzuki J, McDermott E, Isozaki H. Training conditional random fields with multivariate evaluation measures. In: Proceedings of the 21st international conference on computational linguistics and 44th annual meeting of the ACL (ACL/COLING 2006), Sydney, Australia; 2006. p. 217-24.
[16] Cunningham H. GATE a general architecture for text engineering. Comput Human 2002;36(2):223-54.
[17] Pianta E, Girardi C, Zanoli R. The TextPro tool suite. In: Proceedings of the 6th language resources and evaluation conference (LREC 2008), Marrakech, Morocco; 2008.
[18] Gaizauskas R, Wilks Y. Information extraction: beyond document retrieval. J Document 1998;54(1):70-105.
[19] Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. In: Geissbuhler A, Kulikowski C, editors. IMIA yearbook of medical informatics. Stuttgart (DE): Schattauer Publishers; 2008. p. 128-44.
[20] McNaught J, Black W. Information extraction: the task. In: Ananiadou S, McNaught J, editors. Text mining for biology and biomedicine. London (UK): Artech House Books; 2006. p. 143-76.
[21] Bleik S, Xiong W, Wang Y, Song M. Biomedical concept extraction using concept graphs and ontology-based mapping. In: Proceedings of the 4th IEEE international conference on bioinformatics and biomedicine (BIBM 2010), Hong Kong, China; 2010. p. 553-6.
[22] Dinh D, Tamine L. Biomedical concept extraction based on combining the content-based and word order similarities. In: Proceedings of the 26th ACM symposium on applied computing, TaiChung, Taiwan; 2011. p. 1159-63.
[23] Kang N, Afzal Z, Singh B, van Mulligen EM, Kors JA. Using an ensemble system to improve concept extraction from clinical records. J Biomed Inform 2012;45(3):423-8.
[24] Soderland S, Aronow D, Fisher D, Aseltine J, Lehnert W. Machine learning of text analysis rules for clinical records. Tech rep. TE-39. Amherst (USA): Center for Intelligent Information Retrieval, University of Massachusetts; 1995.
[25] Evans DA, Brownlow ND, Hersh WR, Campbell EM. Automating concept identification in the electronic medical record: an experiment in extracting dosage information. In: Proceedings of the annual fall symposium of the American Medical Informatics Association, Washington, USA; 1996. p. 388-92.
[26] Harkema H, Roberts I, Gaizauskas R, Hepple M. Information extraction from clinical records. In: Proceedings of the 4th UK e-science all hands meeting (AHM 2005), Nottingham, UK; 2005. p. 39-43.
[27] Sotelsek-Margalef A, Villena-Román J. MIDAS: an information-extraction approach to medical text classification. Proc Lenguaje Nat 2008;41:97-104.
[28] Mykowiecka A, Marciniak M, Kups´c´ A. Rule-based information extraction from patients' clinical data. J Biomed Inform 2009;42(5):923-36.
[29] Grishman R, Huttunen S, Yangarber R. Information extraction for enhanced access to disease outbreak reports. J Biomed Inform 2002;35(4):236-46.
[30] Zhou X, Han H, Chankai I, Prestrud AA, Brooks AD. Converting semi-structured clinical medical records into information and knowledge. In: Proceedings of the 21st international conference on data engineering (ICDE 2005), Tokyo, Japan; 2005. p. 1162-9.
[31] Taira RK, Soderland SG, Jakobovits RM. Automatic structuring of radiology free-text reports. RadioGraphics 2001;21(1):237-45.
[32] Li D, Kipper-Schuler K, Savova G. Conditional random fields and support vector machines for disorder named entity recognition in clinical texts. In: Proceedings of the ACL workshop on current trends in biomedical natural language processing (BioNLP 2008), Columbus, USA; 2008. p. 94-5.
[33] Wang Y, Patrick J. Cascading classifiers for named entity recognition in clinical notes. In: Proceedings of the RANLP 2009 workshop on biomedical information extraction, Borovets, Bulgaria; 2009. p. 42-9.
[34] Jonnalagadda SR, Li D, Sohn S, Wu ST, Wagholikar K, Torii M, et al. Coreference analysis in clinical notes: a multi-pass sieve with alternate anaphora resolution modules. J Am Med Inform Assoc 2012;19(5):867-74.
[35] Kim S-M, Hovy E. Automatic identification of pro and con reasons in online reviews. In: Proceedings of the 21st international conference on computational linguistics and 44th annual meeting of the Association for Computational Linguistics (COLING/ACL 2006), Sydney, Australia; 2006. p. 483-90.
[36] Bramsen P, Deshpande P, Lee YK, Barzilay R. Finding temporal order in discharge summaries. In: Proceedings of the 30th AMIA annual symposium (AMIA 2006), Washington, USA; 2006. p. 81-5.
[37] Pan W, Zhong E, Yang Q. Transfer learning for text mining. In: Aggarwal CC, Zhai C, editors. Mining text data. Heidelberg (DE): Springer; 2012. p. 223-58.
[38] Wang H, Huang H, Nie F, Ding CH. Cross-language web page classification via dual knowledge transfer using nonnegative matrix tri-factorization. In: Proceedings of the 34th ACM international conference on research and development in information retrieval (SIGIR 2011), Beijing, China; 2011. p. 933-42.
[39] Wainwright MJ, Jordan MI. Graphical models, exponential families, and variational inference. Found Trends Mach Learn 2008;1(1/2):1-305.