1. Ahrenberg, L., Kok, S., Vasarhelyi, K., Rutherford, A.: Nepidemix (2016)
2. Van den Broeck, W., Gioannini, C., Goncalves, B., Quaggiotto, M., Colizza, V., Vespignani, A.: The gleamviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC infectious diseases 11(1), 37 (2011)
3. Burt, R.S.: Social Contagion and Innovation: Cohesion Versus Structural Equivalence. American Journal of Sociology (1987)
4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems 27(5), 387{408 (2012)
5. Castellano, C., Munoz, M.A., Pastor-Satorras, R.: The non-linear q-voter model. Physical Review E 80, 041,129 (2009)
6. Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr, I.M.: Flute, a publicly available stochastic in uenza epidemic simulation model. PLoS computational biology 6(1), e1000,656 (2010)
7. Cli ord, P., Sudbury, A.: A model for spatial con ict. Biometrika 60(3), 581{588 (1973). DOI 10.1093/biomet/ 60.3.581
8. Coelho, F.C., Cruz, O.G., Codeco, C.T.: Epigrass: a tool to study disease spread in complex networks. Source code for biology and medicine 3(1), 3 (2008)
9. De uant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Advances in Complex Systems 3(4), 87{98 (2000)
10. Friedman, R., Friedman, M.: The Tyranny of the Status Quo. Harcourt Brace Company, Orlando, FL, USA (1984)
11. Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25(4), 403{406 (2002)
12. Granovetter, M.: Threshold models of collective behavior. The American Journal of Sociology 83(6), 1420{1443 (1978)
13. Grefenstette, J.J., Brown, S.T., Rosenfeld, R., DePasse, J., Stone, N.T., Cooley, P.C., Wheaton, W.D., Fyshe, A., Galloway, D.D., Sriram, A., et al.: Fred (a framework for reconstructing epidemic dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC public health 13(1), 940 (2013)
14. Havlin, S.: Phone infections. Science (2009)
15. Holley, R., Liggett, T.: Ergodic theorems for weakly interacting in nite systems and the voter model. Ann. Probab. 3(4), 643{663 (1975)
16. Holme, P., Saramaki, J.: Temporal networks. Physics reports 519(3), 97{125 (2012)
17. Jenness, S., Goodreau, S.M., Morris, M.: Epimodel: Mathematical modeling of infectious disease. r package version 1.3.0. (2017). URL http://www.epimodel.org
18. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of in uence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pp. 137{146 (2003)
19. Kermack, W.O., McKendrick, A.: A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115(772), 700{ 721 (1927)
20. Kiss, I.Z., Miller, J.C., Simon, P.: (Book) Mathematics of epidemics on networks: from exact to approximate models. Springer (Forthcoming)
21. Kovanen, L., Karsai, M., Kaski, K., Kertesz, J., Saramaki, J.: Temporal motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment 2011(11), P11,005 (2011)
22. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A kinetic view of statistical physics. Cambridge University Press (2010)
23. Lee, S., Rocha, L.E., Liljeros, F., Holme, P.: Exploiting temporal network structures of human interaction to effectively immunize populations. PloS one 7(5), e36,439 (2012)
24. Leskovec, J., Sosic, R.: Snap: A general-purpose network analysis and graph-mining library. ACM Transactions on Intelligent Systems and Technology (TIST) 8(1), 1 (2016)
25. Milli, L., Rossetti, G., Pedreschi, D., Giannotti, F.: Information di usion in complex networks: The active/passive conundrum. In: Complex Networks (2017)
26. Milli, L., Rossetti, G., Pedreschi, D., Giannotti, F.: Diffusive phenomena in dynamic networks: a data-driven study. In: 9th Conference on Complex Networks, CompleNet (2018)
27. Newton, C.M.: Graphics: from alpha to omega in data analysis. In: P.C. Wang (ed.) Graphical Representation of Multivariate Data, pp. 59 { 92. Academic Press (1978). DOI https: //doi.org/10.1016/B978-0-12-734750-9.50008-3. URL http://www.sciencedirect.com/science/article/pii/ B9780127347509500083
28. Pennacchioli, D., Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F., Coscia, M.: The three dimensions of social prominence. In: International Conference on Social Informatics, pp. 319{332. Springer (2013)
29. Rossetti, G.: Rdyn: Graph benchmark handling community dynamics. Journal of Complex Networks (2017)
30. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. arXiv preprint arXiv:1707.03186 (2017)
31. Rossetti, G., Guidotti, R., Miliou, I., Pedreschi, D., Giannotti, F.: A supervised approach for intra-/intercommunity interaction prediction in dynamic social networks. Social Network Analysis and Mining 6(1), 86 (2016)
32. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Machine Learning pp. 1{29 (2016)
33. Ruan, Z., In~iguez, G., Karsai, M., Kertesz, J.: Kinetics of social contagion. Phys. Rev. Lett. 115, 218,702 (2015). DOI 10.1103/PhysRevLett.115.218702
34. Sahneh, F.D., Vajdi, A., Shakeri, H., Fan, F., Scoglio, C.: Gemfsim: a stochastic simulator for the generalized epidemic modeling framework. Journal of Computational Science 22, 36{44 (2017)
35. S^rbu, A., Loreto, V., Servedio, V.D., Tria, F.: Opinion dynamics with disagreement and modulated information. Journal of Statistical Physics pp. 1{20 (2013)
36. S^rbu, A., Loreto, V., Servedio, V.D., Tria, F.: Opinion dynamics: Models, extensions and external e ects. In: Participatory Sensing, Opinions and Collective Awareness, pp. 363{401. Springer International Publishing (2017)
37. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. International Journal of Modern Physics C 11, 1157{1165 (2001)
38. Szor, P.: Fighting computer virus attacks. USENIX (2004)
39. Tabourier, L., Libert, A.S., Lambiotte, R.: Predicting links in ego-networks using temporal information. EPJ Data Science 5(1), 1 (2016)
40. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theoretical Computer Science 609, 245{252 (2016)
41. Vilone, D., Giardini, F., Paolucci, M., Conte, R.: Reducing individuals' risk sensitiveness can promote positive and non-alarmist views about catastrophic events in an agent-based simulation. arXiv preprint arXiv:1609.04566 (2016)
42. Wang, P., Gonzalez, M.C., Menezes, R., Barabasi, A.L.: Understanding the spread of malicious mobile-phone programs and their damage potential. International Journal of Information Security (2013)
43. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences 99(9), 5766{5771 (2002)
44. Wilensky, U.: Netlogo (1999)
45. Word, D.P., Abbott, G.H., Cummings, D., Laird, C.D.: Estimating seasonal drivers in childhood infectious diseases with continuous time and discrete-time models. In: American Control Conference (ACC), 2010, pp. 5137{ 5142. IEEE (2010)