[1] O. C. Akin, P. Paradisi, P. Grigolini, Perturbation-induced emergence of poisson-like behavior in non-poisson systems. J. Stat. Mech.: Theory Exp., (2009), P01013.
[2] O.C. Akin, P. Paradisi, P. Grigolini, Periodic trend and fluctuations: The case of strong correlation. Physica A 371, (2006), 157-170.
[3] P. Allegrini, P. Paradisi, D. Menicucci, M. Laurino, R. Bedini, A. Piarulli, A. Gemignani, Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace. Chaos Solitons Fract. 55, (2013), 32-43.
[4] B. Baeumer, M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, (2001), 481-500.
[5] B. Baeumer, M. M. Meerschaert, E. Nane, Brownian subordinators and fractional Cauchy problems. T. Am. Math. Soc. 361, No 7 (2009), 3915-3930.
[6] B. Baeumer, M. M. Meerschaert, E. Nane, Space-time fractional diffusion. J. Appl. Prob. 46, (2009), 1100-1115.
[7] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific Publishers, New Jersey (2012). Series on Complexity, Nonlinearity and Chaos, volume 3.
[8] E. Barkai, CTRW pathways to the fractional diffusion equation. Chem. Phys. 284, (2002), 13-27.
[9] D. A. Benson, M. M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective. Adv. Water Resour. 51, (2013), 479-497.
[10] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications. Springer (2008).
[11] S. Bianco, P. Grigolini, P. Paradisi, A fluctuating environment as a source of periodic modulation. Chem. Phys. Lett. 438, No 4-6 (2007), 336-340.
[12] D. O. Cahoy, On the parametrization of the M-Wright function. Far East J. Theor. Stat. 34, No 2 (2011), 155-164.
[13] D. O. Cahoy, Estimation and simulation for the M-Wright function. Commun. Stat.-Theor. M. 41, No 8 (2012), 1466-1477.
[14] D. O. Cahoy, Moment estimators for the two-parameter M-Wright distribution. Computation. Stat. 27, No 3 (2012), 487-497.
[15] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, A. Vulpiani, On strong anomalous diffusion. Physica D 134, (1999), 75-93.
[16] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating skewed stable random variables. J. Amer. Statist. Assoc. 71, (1976), 340-344.
[17] M. Chevrollier, N. Mercadier, W. Guerin, R. Kaiser, Anomalous photon diffusion in atomic vapors. Eur. Phys. J. D 58, (2010), 161-165.
[18] A. Compte, Stochastic foundations of fractional dynamics. Phys. Rev. E 53, No 4 (1996), 4191-4193.
[19] D.R. Cox, Renewal Theory. Methuen & Co. Ltd., London (1962).
[20] J. L. da Silva, Local times for grey Brownian motion. Int. J. Mod. Phys. Conf. Ser. 36, (2015), 1560003. [7th Jagna International Workshop (2014)].
[21] J. L. da Silva, M. Erraoui, Grey Brownian motion local time: Existence and weak-approximation. Stochastics 87, (2014), 347-361.
[22] D. del Castillo-Negrete, Fractional diffusion in plasma turbulence. Phys. Plasmas 11, No 8 (2004), 3854-3864.
[23] D. del Castillo-Negrete, Non-diffusive, non-local transport in fluids and plasmas. Nonlin. Processes Geophys. 17, (2010), 795-807.
[24] D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Nondiffusive transport in plasma turbulence: A fractional diffusion approach. Phys. Rev. Lett. 94, (2005), 065003.
[25] D. del Castillo-Negrete, P. Mantica, V. Naulin, J. J. Rasmussen, JET EFDA contributors, Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments. Nucl. Fusion 48, (2008), 075009.
[26] T. Dieker, Simulation of Fractional Brownian Motion. CWI and University of Twente, The Netherlands (2004). Ph.D. Thesis, Department of Mathematical Sciences, University of Twente, The Netherlands.
[27] P. Dieterich, R. Klages, R. Preuss, A. Schwab, Anomalous dynamics of cell migration. Proc. Nat. Acad. Sci. 105, No 2 (2008), 459-463.
[28] G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C. S. Chang, On the validity of the local diffusive paradigm in turbulent plasma transport. Phys. Rev. E 82, (2010), 025401(R).
[29] B. Dybiec, Anomalous diffusion: temporal non-Markovianity and weak ergodicity breaking. J. Stat. Mech.-Theory Exp., (2009), P08025.
[30] B. Dybiec, E. Gudowska-Nowak, Subordinated diffusion and continuous time random walk asymptotics. Chaos 20, No 4 (2010), 043129.
[31] S. Eule, R. Friedrich, Subordinated Langevin equations for anomalous diffusion in external potentials-biasing and decoupled external forces. Europhys. Lett. 86, (2009), 3008.
[32] W. Feller, An Introduction to Probability Theory and its Applications, volume 2. Wiley, New York (1971), second edition.
[33] H. C. Fogedby, Langevin equations for continuous time L´evy flights. Phys. Rev. E 50, No 2 (1994), 1657-1660.
[34] D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E 77, (2008), 021122.
[35] D. Fulger, E. Scalas, G. Germano, Random numbers form the tails of probability distributions using the transformation method. Fract. Calc. Appl. Anal. 16, No 2 (2013), 332-353.
[36] G. Germano, M. Politi, E. Scalas, R. L. Schilling, Stochastic calculus for uncoupled continuous-time random walks. Phys. Rev. E 79, No 6 (2009), 066102.
[37] R. Gorenflo, A. Iskenderov, Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, (2000), 75-86.
[38] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, No 2 (1998), 167-191.
[39] R. Gorenflo, F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, No 2 (2009), 400-415.
[40] R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics 193, (2011), 119-132.
[41] R. Gorenflo, F. Mainardi, Parametric subordination in fractional diffusion processes. In: J. Klafter, S. C. Lim, and R. Metzler, editors, Fractional Dynamics. Recent Advances, World Scientific, Singapore (2012), 227-261.
[42] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, (2002), 521-541.
[43] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional diffusion: probability distributions and random walk models. Physica A 305, No 1-2 (2002), 106-112.
[44] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: A discrete random walk approach. Nonlinear Dynam. 29, No 1-4 (2002), 129-143.
[45] R. Gorenflo, F. Mainardi, A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fract. 34, No 1 (2007), 87-103.
[46] P. Grigolini, A. Rocco, B. J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E 59, No 3 (1999), 2603- 2613.
[47] K. Gustafson, D. del Castillo-Negrete, W. Dorland, Finite Larmor radius effects on nondiffusive tracer transport in zonal flows. Phys. Plasmas 15, (2008), 102309.
[48] J. Honkonen, Stochastic processes with stable distributions in random environments. Phys. Rev. E 55, No 1 (1996), 327-331.
[49] J. R. M. Hosking, Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 20, (1984), 1898- 1908.
[50] B. D. Hughes, Anomalous diffusion, stable processes, and generalized functions. Phys. Rev. E 65, (2002), 035105(R).
[51] J. Klafter, I. M. Sokolov, Anomalous diffusion spread its wings. Physics World 18, (2005), 29-32.
[52] D. Kleinhans, R. Friedrich, Continuous-time random walks: Simulation of continuous trajectories. Phys. Rev. E 76, (2007), 061102.
[53] X. Leoncini, L. Kuznetsov, G. M. Zaslavsky, Evidence of fractional transport in point vortex flow. Chaos Solitons Fract. 19, (2004), 259- 273.
[54] Yu. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54, (2013), 031505.
[55] M. Magdziarz, A. Weron, J. Klafter, Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: The case of a time-dependent force. Phys. Rev. Lett. 101, (2008), 210601.
[56] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos Solitons Fract. 7, (1996), 1461-1477.
[57] F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153-192.
[58] F. Mainardi, A. Mura, G. Pagnini, The functions of the Wright type in fractional calculus. Lecture Notes of Seminario Interdisciplinare di Matematica 9, (2010), 111-128.
[59] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Differ. Equations 2010, (2010), 104505.
[60] F. Mainardi, G. Pagnini, The Wright functions as solutions of the time-fractional diffusion equations. Appl. Math. Comput. 141, (2003), 51-62.
[61] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441-459.
[62] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin convolution for subordinated stable processes. J. Math. Sci. 132(5), (2006), 637-642.
[63] F. Mainardi, G. Pagnini, R. K. Saxena, Fox H functions in fractional diffusion. J. Comput. Appl. Math. 178, (2005), 321-331.
[64] M. M. Meerschaert, D. A. Benson, H.-P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, (2002), 041103.
[65] M. M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter (2012).
[66] Y. Meroz, I. M. Sokolov, J. Klafter, Unequal twins: Probability distributions do not determine everything. Phys. Rev. Lett. 107, (2011), 260601.
[67] R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Theor. 37, No 31 (2004), R161-R208.
[68] R. Metzler, T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284, (2002), 67-90.
[69] E. W. Montroll, Random walks on lattices. Proc. Symp. Appl. Math. Am. Math. Soc. 16, (1964), 193-220.
[70] E. W. Montroll, G. H. Weiss, Random walks on lattices. II. J. Math. Phys. 6, (1965), 167-181.
[71] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Lambert Academic Publishing (2011). Ph.D. Thesis, Physics Department, University of Bologna (2008).
[72] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. F. 20, No 3-4 (2009), 185-198.
[73] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41, (2008), 285003.
[74] G. Pagnini, Erd´elyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No 1 (2012), 117-127.
[75] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16, No 2 (2013), 436-453.
[76] G. Pagnini, Self-similar stochastic models with stationary increments for symmetric space-time fractional diffusion. In: Proceedings of the 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2014, Senigallia (AN), Italy, 10-12 September (2014), Paper Code MESA2014 003. Print ISBN:978-1-4799-2772-2; INSPEC Accession Number:14701095; doi:10.1109/MESA.2014.6935520.
[77] G. Pagnini, Short note on the emergence of fractional kinetics. Physica A 409, (2014), 29-34.
[78] G. Pagnini, Subordination formulae for space-time fractional diffusion processes via Mellin convolution. In: P. M. Pardalos, R. P. Agarwal, L. Koˇccinac, R. Neck, N. Mastorakis, and K. Ntalianas, editors, Recent Advances in Mathematics, Statistics and Economics. Proceedings of the 2014 International Conference on Pure Mathematics - Applied Mathematics (PM-AM'14), Venice, Italy, 15-17 March (2014), 40-45. ISBN: 978-1-61804-225-5.
[79] G. Pagnini, Generalized Equations for Anomalous Diffusion and their Fundamental Solutions. Thesis for Degree in Physics, University of Bologna, October (2000). In Italian.
[80] G. Pagnini, A. Mura, F. Mainardi, Generalized fractional master equation for self-similar stochastic processes modelling anomalous diffusion. Int. J. Stoch. Anal. 2012, (2012), 427383.
[81] G. Pagnini, A. Mura, F. Mainardi, Two-particle anomalous diffusion: Probability density functions and self-similar stochastic processes. Phil. Trans. R. Soc. A 371, (2013), 20120154.
[82] G. Pagnini, E. Scalas, Historical notes on the M-Wright/Mainardi function. Communications in Applied and Industrial Mathematics 6, No 1 (2014), e-496. DOI: 10.1685/journal.caim.496 (Editorial).
[83] P. Paradisi, Fractional calculus in statistical physics: The case of time fractional diffusion equation. Communications in Applied and Industrial Mathematics 6, No 2 (2014), e-530. doi: 10.1685/journal.caim.530.
[84] P. Paradisi, P. Allegrini, A. Gemignani, M. Laurino, D. Menicucci, A. Piarulli, Scaling and intermittency of brain events as a manifestation of consciousness. AIP Conf. Proc. 1510, (2013), 151-161.
[85] P. Paradisi, R. Cesari, D. Contini, A. Donateo, L. Palatella, Characterizing memory in atmospheric time series: an alternative approach based on renewal theory. Eur. Phys. J. Special Topics 174, (2009), 207-218.
[86] P. Paradisi, R. Cesari, A. Donateo, D. Contini, P. Allegrini, Diffusion scaling in event-driven random walks: an application to turbulence. Rep. Math. Phys. 70, (2012), 205-220.
[87] P. Paradisi, R. Cesari, A. Donateo, D. Contini, P. Allegrini, Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence. Nonlin. Processes Geophys. 19, (2012), 113-126. Corrigendum, Nonlin. Processes Geophys. 19, (2012), 685.
[88] P. Paradisi, R. Cesari, P. Grigolini, Superstatistics and renewal critical events. Cent. Eur. J. Phys. 7, (2009), 421-431.
[89] P. Paradisi, R. Cesari, F. Mainardi, A. Maurizi, F. Tampieri, A generalized Fick's law to describe non-local transport effects. Phys. Chem. Earth 26, No 4 (2001), 275-279.
[90] P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, The fractional Fick's law for non-local transport processes. Physica A 293, No 1-2 (2001), 130-142.
[91] P. Paradisi, D. Chiarugi, P. Allegrini, A renewal model for the emergence of anomalous solute crowding in liposomes. BMC Syst. Biol. 9, suppl 3 (2015), s7.
[92] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).
[93] S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A. V. Milovanov, A. Ivlev, J. J. Rasmussen, G. E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, No 10 (2006), 105010.
[94] A. Rocco, B. J. West, Fractional calculus and the evolution of fractal phenomena. Physica A 265, No 3-4 (1999), 535-546.
[95] A. Saichev, G. Zaslavsky, Fractional kinetic equations: solutions and applications. Chaos 7, (1997), 753-764.
[96] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284, (2000), 376-384.
[97] E. Scalas, R. Gorenflo, F. Mainardi, Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E 69, (2004), 011107.
[98] M. Schmiedeberg, V. Yu. Zaburdaev, H. Stark, On moments and scaling regimes in anomalous random walks. J. Stat. Mech.-Theory Exp., (2009), P12020.
[99] W. R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134-144.
[100] J. H. P. Schulz, A. V. Chechkin, R. Metzler, Correlated continuos time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics. J. Phys. A: Math. Theor. 46, (2013), 475001.
[101] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today 55, (2002), 48-54.
[102] I. M. Sokolov, R. Metzler, Non-uniqueness of the first passage time density of L´evy random processes. J. Phys. A: Math. Theor. 37, (2004), L609-L615.
[103] V. V. Uchaikin, Montroll-Weiss problem, fractional equations and stable distributions. Int. J. Theor. Phys. 39, (2000), 2087-2105.
[104] V. V. Uchaikin, V. M. Zolotarev, Chance and Stability. Stable Distributions and their Applications. VSP, Utrecht (1999).
[105] G. H. Weiss, R. J. Rubin, Random walks: Theory and selected applications. Adv. Chem. Phys. 52, (1983), 363-505.
[106] A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. Phys. Rev. E 77, (2008), 036704.
[107] R. Weron, On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statist. Probab. Lett. 28, (1996), 165-171. Corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96 Corr.pdf or http://www.im.pwr.wroc.pl/∼hugo/RePEc/wuu/wpaper/HSC 96 01.pdf.
[108] G. M. Zaslavsky, Anomalous transport and fractal kinetics. In: H. K. Moffatt, G. M. Zaslavsky, P. Compte, and M. Tabor, editors, Topological Aspects of the Dynamics of Fluids and Plasmas, Kluwer, Dordrecht (1992), 481-491. NATO ASI Series, volume 218.
[109] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Physica D 76, (1994), 110-122.
[110] G. M. Zaslavsky, Renormalization group theory of anomalous transport in systems with Hamiltonian chaos. Chaos 4, (1994), 25-33.
[111] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, (2002), 461-580.
[112] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press (2005).
[113] G. M. Zaslavsky, B. A. Niyazov, Fractional kinetics and accelerator modes. Phys. Rep. 283, (1997), 73-93.