2017
Journal article  Open Access

Fast Hessenberg reduction of some rank structured matrices

Gemignani L., Robol L

Bulge chasing  Mathematics - Numerical Analysis  Analysis  FOS: Mathematics  65F15  Quasiseparable matrices  Numerical Analysis (math.NA)  CMV matrix  Hessenberg reduction  Complexity 

We develop two fast algorithms for Hessenberg reduction of a structured matrix $A = D + UV^H$, where $D$ is a real or unitary n x n diagonal matrix and $U, V in mathbb{C}^{n times k}$. The proposed algorithm for the real case exploits a two-stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted subdiagonals. It is shown that the novel method requires O(n^2 k) arithmetic operations and is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of Re(D) induces a structured reduction on A in a block staircase CMV-type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and show how to generalize the subdiagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in k and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.

Source: SIAM journal on matrix analysis and applications (Print) 38 (2017): 574–598. doi:10.1137/16M1107851

Publisher: Society for Industrial and Applied Mathematics ,, Philadelphia, Pa. , Stati Uniti d'America


[1] A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of matrix polynomials expressed in polynomial bases, IMA J. Numer. Anal., 29 (2009), pp. 141-157, doi:10.1093/imanum/drm051, http://dx.doi.org/10.1093/imanum/drm051.
[2] G. S. Ammar and W. B. Gragg, O(n2) reduction algorithms for the construction of a band matrix from spectral data, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 426-431, doi:10.1137/0612030, http://dx.doi.org/10.1137/0612030.
[3] P. Arbenz and G. H. Golub, On the spectral decomposition of Hermitian matrices modified by low rank perturbations with applications, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 40-58, doi:10.1137/0609004, http://dx.doi.org/10.1137/0609004.
[4] Y. Arlinski˘ı, Conservative discrete time-invariant systems and block operator CMV matrices, Methods Funct. Anal. Topology, 15 (2009), pp. 201-236.
[5] R. Bevilacqua, G. M. Del Corso, and L. Gemignani, A CMV-based eigensolver for companion matrices, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1046-1068, doi:10.1137/140978065, http://dx.doi.org/10.1137/140978065.
[6] R. Bevilacqua, G. M. Del Corso, and L. Gemignani, Compression of unitary rankstructured matrices to CMV-like shape with an application to polynomial rootfinding, J. Comput. Appl. Math., 278 (2015), pp. 326-335, doi:10.1016/j.cam.2014.09.023, http://dx. doi.org/10.1016/j.cam.2014.09.023.
[7] D. A. Bini and L. Robol, On a class of matrix pencils and ℓ-ifications equivalent to a given matrix polynomial, Linear Algebra Appl., (2015), doi:10.1016/j.laa.2015.07.017.
[8] D. A. Bini and L. Robol, Quasiseparable hessenberg reduction of real diagonal plus low rank matrices and applications, Linear Algebra Appl., (2015), doi:10.1016/j.laa.2015.08.026.
[9] C. H. Bischof, B. Lang, and X. Sun, A framework for symmetric band reduction, ACM Trans. Math. Software, 26 (2000), pp. 581-601, doi:10.1145/365723.365735, http://dx.doi. org/10.1145/365723.365735.
[10] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem, Linear Algebra Appl., 154/156 (1991), pp. 741-778, doi:10.1016/0024-3795(91)90402-I, http://dx.doi.org/10.1016/0024-3795(91)90402-I.
[11] M. J. Cantero, L. Moral, and L. Vela´zquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., 362 (2003), pp. 29-56, doi:10.1016/S0024-3795(02)00457-3, http://dx.doi.org/10.1016/S0024-3795(02)00457-3.
[12] S. Delvaux and M. Van Barel, A Hessenberg reduction algorithm for rank structured matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 895-926 (electronic), doi:10.1137/060658953, http://dx.doi.org/10.1137/060658953.
[13] Y. Eidelman, L. Gemignani, and I. Gohberg, Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations, Numer. Algorithms, 47 (2008), pp. 253-273, doi:10.1007/s11075-008-9172-0, http://dx.doi.org/10.1007/ s11075-008-9172-0.
[14] Y. Eidelman, I. Gohberg, and L. Gemignani, On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms, Linear Algebra Appl., 420 (2007), pp. 86- 101, doi:10.1016/j.laa.2006.06.028, http://dx.doi.org/10.1016/j.laa.2006.06.028.
[15] Y. Eidelman, I. Gohberg, and I. Haimovici, Separable type representations of matrices and fast algorithms. Vol. 1, vol. 234 of Operator Theory: Advances and Applications, Birkh¨auser/Springer, Basel, 2014. Basics. Completion problems. Multiplication and inversion algorithms.
[16] Y. Eidelman, I. Gohberg, and I. Haimovici, Separable type representations of matrices and fast algorithms. Vol. 2, vol. 235 of Operator Theory: Advances and Applications, Birkh¨auser/Springer Basel AG, Basel, 2014. Eigenvalue method.
[17] M. Fiedler and T. L. Markham, Completing a matrix when certain entries of its inverse are specified, Linear Algebra Appl., 74 (1986), pp. 225-237, doi:10.1016/0024-3795(86)90125-4, http://dx.doi.org/10.1016/0024-3795(86)90125-4.
[18] I. Gohberg, P. Lancaster, and L. Rodman, Matrix polynomials, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Computer Science and Applied Mathematics.
[19] W. H. Gustafson, A note on matrix inversion, Linear Algebra Appl., 57 (1984), pp. 71-73, doi:10.1016/0024-3795(84)90177-0, http://dx.doi.org/10.1016/0024-3795(84)90177-0.
[20] B. K˚agstro¨m, D. Kressner, E. S. Quintana-Ort´ı, and G. Quintana-Ort´ı, Blocked algorithms for the reduction to Hessenberg-triangular form revisited, BIT, 48 (2008), pp. 563- 584, doi:10.1007/s10543-008-0180-1, http://dx.doi.org/10.1007/s10543-008-0180-1.
[21] R. Killip and I. Nenciu, CMV: the unitary analogue of Jacobi matrices, Comm. Pure Appl. Math., 60 (2007), pp. 1148-1188, doi:10.1002/cpa.20160, http://dx.doi.org/10.1002/cpa. 20160.
[22] B. Simon, CMV matrices: five years after, J. Comput. Appl. Math., 208 (2007), pp. 120-154, doi:10.1016/j.cam.2006.10.033, http://dx.doi.org/10.1016/j.cam.2006.10.033.
[23] M. Van Barel and A. Bultheel, Orthonormal polynomial vectors and least squares approximation for a discrete inner product, Electron. Trans. Numer. Anal., 3 (1995), pp. 1-23 (electronic).
[24] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix computations and semiseparable matrices. Vol. 1, Johns Hopkins University Press, Baltimore, MD, 2008. Linear systems.
[25] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix computations and semiseparable matrices. Vol. II, Johns Hopkins University Press, Baltimore, MD, 2008. Eigenvalue and singular value methods.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:374248,
	title = {Fast Hessenberg reduction of some rank structured matrices},
	author = {Gemignani L. and Robol L},
	publisher = {Society for Industrial and Applied Mathematics ,, Philadelphia, Pa. , Stati Uniti d'America},
	doi = {10.1137/16m1107851 and 10.48550/arxiv.1612.04196},
	journal = {SIAM journal on matrix analysis and applications (Print)},
	volume = {38},
	pages = {574–598},
	year = {2017}
}