[1] S. Du, N. Zheng, L. Xiong, S. Ying, and J. Xue, “Scaling iterative closest point algorithm for registration of m-d point sets,” J. Vis. Comun. Image Repr., vol. 21, no. 5-6, pp. 442-452, Jul. 2010.
[2] K. Parmar and R. Kher, “A comparative analysis of multimodality medical image fusion methods,” in Modelling Symp. (AMS), May 2012, pp. 93-97.
[3] M. Bhattacharya and A. Das, “Multimodality medical image registration and fusion techniques using mutual information and genetic algorithm-based approaches,” in Software Tools and Algorithms for Biological Systems, 2011, vol. 696, pp. 441-449.
[4] I. Reducindo, E. Arce-Santana, D. Campos-Delgado, and A. Alba, “Evaluation of multimodal medical image registration based on particle filter,” in Electrical Engineering Computing Science and Automatic Control, Sept 2010, pp. 406-411.
[5] N. Mellado, G. Guennebaud, P. Barla, P. Reuter, and C. Schlick, “Growing least squares for the analysis of manifolds in scalespace,” Comp. Graph. Forum, vol. 31, no. 5, Aug. 2012.
[6] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent range image registration methods with accuracy evaluation,” Image Vision Comput., vol. 25, no. 5, pp. 578-596, May 2007.
[7] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A survey on shape correspondence,” Computer Graphics Forum, vol. 30, no. 6, pp. 1681-1707, 2011.
[8] G. Tam, Z.-Q. Cheng, Y.-K. Lai, F. Langbein, Y. Liu, D. Marshall, R. Martin, X.-F. Sun, and P. Rosin, “Registration of 3d point clouds and meshes: A survey from rigid to nonrigid,” Visualization and Computer Graphics, IEEE Trans. on, vol. 19, no. 7, 2013.
[9] H. Pottmann, S. Leopoldseder, and M. Hofer, “Registration without icp,” Comput. Vis. Image Underst., vol. 95, no. 1, 2004.
[10] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” in Third International Conference on 3D Digital Imaging and Modeling (3DIM), Jun. 2001.
[11] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proc. of the Symp. on Geometry Processing, 2004.
[12] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest point,” Proc. of the Symp. on Geometry Processing, vol. 32, no. 5, pp. 1-11, 2013.
[13] P. Heider, A. Pierre-Pierre, R. Li, and C. Grimm, “Local shape descriptors, a survey and evaluation,” in Proc. of EG 3DOR 2011, Aire-la-Ville, Switzerland, Switzerland, 2011, pp. 49-56.
[14] A. Johnson, “Spin-images: A representation for 3-d surface matching,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon University, August 1997.
[15] E. Kalogerakis, D. Nowrouzezahrai, P. Simari, and K. Singh, “Extracting lines of curvature from noisy point clouds,” Comput. Aided Des., vol. 41, no. 4, pp. 282-292, Apr. 2009.
[16] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d registration,” in Robotics and Automation, 2009. ICRA'09. IEEE, 2009, pp. 3212-3217.
[17] X. Li and I. Guskov, “Multi-scale features for approximate alignment of point-based surfaces,” in Proc. of the Symp. on Geometry Processing. Eurographics Association, 2005.
[18] L. Skelly and S. Sclaroff, “Improved feature descriptors for 3-D surface matching,” in Proc. SPIE Conf. on Two- and 3-Dimensional Methods for Inspection and Metrology, 2007.
[19] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust global registration,” in Proc. of the Symp. on Geometry Processing, 2005.
[20] A. Makadia, A. I. Patterson, and K. Daniilidis, “Fully automatic registration of 3d point clouds,” in Proc. of the CVPR 2006. Washington, DC, USA: IEEE Computer Society, 2006, pp. 1297-1304.
[21] H. Pottmann, Q.-X. Huang, Y.-L. Yang, and S.-M. Hu, “Geometry and convergence analysis of algorithms for registration of 3d shapes,” Int. J. Comput. Vision, vol. 67, no. 3, pp. 277-296, 2006.
[22] S. Krishnan, P. Y. Lee, J. B. Moore, and S. Venkatasubramanian, “Global registration of multiple 3d point sets via optimizationon-a-manifold.” in Symposium on Geometry Processing, 2005, pp. 187-196.
[23] F. Bonarrigo and A. Signoroni, “An enhanced 'optimization-on-amanifold' framework for global registration of 3d range data,” in Proc. of 3DIM/PVT 2011. IEEE Computer Society, 2011.
[24] D. Aiger, N. J. Mitra, and D. Cohen-Or, “4-points congruent sets for robust pairwise surface registration,” ACM Trans. Graph., vol. 27, no. 3, pp. 85:1-85:10, Aug. 2008.
[25] N. Mellado, D. Aiger, and N. J. Mitra, “Super 4pcs fast global pointcloud registration via smart indexing,” Computer Graphics Forum, vol. 33, no. 5, pp. 205-215, 2014.
[26] E. Rodola', A. Albarelli, F. Bergamasco, and A. Torsello, “A scale independent selection process for 3d object recognition in cluttered scenes,” Int. Journal of Computer Vision, vol. 102, no. 1-3, 2013.
[27] M. Corsini, M. Dellepiane, F. Ganovelli, R. Gherardi, A. Fusiello, and R. Scopigno, “Fully automatic registration of image sets on approximate geometry,” International Journal of Computer Vision, vol. 102, no. 1-3, pp. 91-111, 2013.
[28] B. Lin, T. Tamaki, F. Zhao, B. Raytchev, K. Kaneda, and K. Ichii, “Scale alignment of 3d point clouds with different scales,” Machine Vision and Applications, vol. 25, no. 8, pp. 1989-2002, 2014.
[29] R. Pintus, E. Gobbetti, and R. Combet, “Fast and robust semiautomatic registration of photographs to 3d geometry,” in Proc. of VAST 2011, Aire-la-Ville, Switzerland, Switzerland, 2011, pp. 9-16.
[30] C. Wu, B. Clipp, X. Li, J.-M. Frahm, and M. Pollefeys, “3d model matching with viewpoint-invariant patches (vip),” in Computer Vision and Pattern Recognition, CVPR 2008, 2008.
[31] H. Kim and A. Hilton, “Evaluation of 3d feature descriptors for multi-modal data registration,” in Proc. of 3DV, International Conference on 3D Vision, June 2013.
[32] S. Lee, M. Park, and K. Lee, “Full 3d surface reconstruction of partial scan data with noise and different levels of scale,” Journal of Mechanical Science and Technology, vol. 28, no. 8, 2014.
[33] L. Quan and K. Tang, “Polynomial local shape descriptor on interest points for 3d part-in-whole matching,” Computer-Aided Design, vol. 59, no. 0, 2015.
[34] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational shape approximation,” ACM Tr. on Graph., vol. 23, pp. 905-914, Aug. 2004.
[35] R. Raguram and J.-M. Frahm, “Recon: Scale-adaptive robust estimation via residual consensus,” Computer Vision, IEEE International Conference on, vol. 0, pp. 1299-1306, 2011.
[36] C. Wang, M. M. Bronstein, A. M. Bronstein, and N. Paragios, “Discrete minimum distortion correspondence problems for nonrigid shape matching,” in Proc. of SSVM, Berlin, 2012.
[37] D. Raviv, A. M. Bronstein, M. M. Bronstein, R. Kimmel, and N. Sochen, “Affine-invariant geodesic geometry of deformable 3d shapes,” Computers & Graphics, vol. 35, no. 3, 2011.
[38] R. M. Rustamov, “Laplace-beltrami eigenfunctions for deformation invariant shape representation,” in Proc. of the Symp. on Geometry Processing, 2007, pp. 225-233.
[39] A. Dubrovina and R. Kimmel, “Matching shapes by eigendecomposition of the laplace-beltrami operator,” in Proc. 3DPVT, vol. 2, no. 3, 2010.
[40] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative multi-scale signature based on heat diffusion,” in Proc. of the Symp. on Geometry Processing, 2009.
[41] M. M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for non-rigid shape recognition.” in CVPR, 2010, pp. 1704-1711.
[42] K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in heat: A new approach to computing distance based on heat flow,” ACM Trans. Graph., vol. 32, no. 5, pp. 152:1-152:11, Oct. 2013.
[43] G. Patane´ and M. Spagnuolo, “Heat diffusion kernel and distance on surface meshes and point sets,” Computers & Graphics, vol. 37, no. 6, 2013.
[44] H. Fadaifard, G. Wolberg, and R. Haralick, “Multiscale 3d feature extraction and matching with an application to 3d face recognition,” Graphical Models, vol. 75, no. 4, pp. 157 - 176, 2013.
[45] B. Romeny, Front-End Vision and Multi-Scale Image Analysis: Multiscale Computer Vision Theory and Applications, written in Mathematica, 1st ed. Springer Publishing, 2009.
[46] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. of the International Conference on Computer Vision. Washington, DC, USA: IEEE Computer Society, 1999.
[47] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its application to action recognition,” in Proc. of the 15th International Conference on Multimedia, 2007, pp. 357-360.
[48] G. Flitton, T. Breckon, and N. Megherbi Bouallagu, “Object recognition using 3d sift in complex ct volumes,” in Proc. of BMVS 2010, 2010, pp. 11.1-11.12.
[49] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud, “Surface feature detection and description with applications to mesh matching,” in CVPR 2009, 2009.
[50] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Vandermeulen, “Feature detection on 3d face surfaces for pose normalisation and recognition,” in Biometrics: Theory Applications and Systems, 2010., 2010.
[51] T. Darom and Y. Keller, “Scale-invariant features for 3-d mesh models,” IEEE Trans. on Image Processing, vol. 21, 2012.
[52] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Trans. Graph., vol. 26, no. 3, Jul. 2007.
[53] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, “A benchmark for surface reconstruction,” ACM Trans. Graph., vol. 32, no. 2, pp. 20:1-20:17, Apr. 2013.
[54] M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and flexible sampling with blue noise properties of triangular meshes,” Trans. on Visualization and Computer Graphics, vol. 18, no. 6, 2012.
[55] N. Mellado, G. Ciaudo, G. Guennebaud, and P. Barla, “Patate lib,” http://patate.gforge.inria.fr/, 2013.
[56] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, “Meshlab: an open-source mesh processing tool,” in Sixth Eurographics Italian Chapter Conference, 2008, p. 129.
[57] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.
[58] A. Albarelli, E. Rodola, and A. Torsello, “Loosely distinctive features for robust surface alignment,” in Computer Vision-ECCV 2010. Springer, 2010, pp. 519-532.
[59] A. Johnson and M. Hebert, “Using spin images for efficient object recognition in cluttered 3d scenes,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, no. 5, May 1999.
[60] T. Tamaki, S. Tanigawa, Y. Ueno, B. Raytchev, and K. Kaneda, “Scale matching of 3d point clouds by finding keyscales with spin images,” in International Conference on Pattern Recognition, 2010.
[61] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 14, no. 2, pp. 239-256, Feb 1992.