2013
Journal article  Open Access

Scalable analysis of movement data for extracting and exploring significant places

Andrienko G., Andrienko N., Hurter C., Rinzivillo S., Wroebel S.

time series analysis  visualization  Event detection  data mining  trajectories  spatial clustering  Computer Vision and Pattern Recognition  [INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC]  spatiotemporal clustering  Computer Graphics and Computer-Aided Design  Mobility data mining  Clustering  spatiotemporal data  trajectory  Interactive data exploration and discovery  Signal Processing  cities and towns  spatial events  Data visualization  context  image color analysis  Software  GA  movement 

Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: (1) event extraction from trajectories; (2) extraction of relevant places based on event clustering; (3) spatio-temporal aggregation of events or trajectories; (4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computer's RAM and can be applied to very large datasets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales.

Source: IEEE transactions on visualization and computer graphics (Online) 19 (2013): 1078–1094. doi:10.1109/TVCG.2012.311

Publisher: IEEE Computer Society,, New York, NY , Stati Uniti d'America


[1] G. Andrienko, N. Andrienko, A general framework for using aggregation in visual exploration of movement data. The Cartographic Journal, 2010, 47 (1), pp.22-40
[2] G. Andrienko, N. Andrienko, P. Bak, D. Keim, S. Kisilevich, S. Wrobel. A conceptual framework and taxonomy of techniques for analyzing movement. Journal of Visual Languages and Computing, 2011, 22(3), pp.213-232
[3] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, S. Wrobel. From Movement Tracks through Events to Places: Extracting and Characterizing Significant Places from Mobility Data. In Proceedings of IEEE Visual Analytics Science and Technology (VAST 2011), pp.161-170, 2011
[4] G.Andrienko, N.Andrienko, M.Heurich. An event-based conceptual model for context-aware movement analysis. International Journal Geographical Information Science, 2011, 25(9), pp.1347-1370
[5] G. Andrienko, N. Andrienko, M. Mladenov, M. Mock, C. Poelitz. Identifying Place Histories from Activity Traces with an Eye to Parameter Impact. IEEE Transactions on Visualization and Computer Graphics (TVCG), 18 (5): 675-688, 2012
[6] N.Andrienko, G.Andrienko. Cumulative Curves for Exploration of Demographic Data: a Case Study of Northwest England. Computational Statistics, 2004, 19(1), pp.9-28
[7] N.Andrienko, G.Andrienko. Exploratory Analysis of Spatial and Temporal Data. A Systematic Approach. Springer, 2006
[8] N.Andrienko, G.Andrienko. Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(2), pp.205-219
[9] M.Ankerst, M.Breunig, H.-P.Kriegel, J.Sander. OPTICS: Ordering points to identify the clustering structure. In: ACM SIGMOD 1999, pp. 49-60.
[10] K. Beard, H. Deese, N.R. Pettigrew. A Framework for Visualization and Exploration of Events. Information Visualization, 7, 2008, pp. 133-151
[11] P.Buono, A.Aris, C.Plaisant, A.Khella, B. Shneiderman. Interactive Pattern Search in Time Series. In Proc. Conf. on Visualization and Data Analysis (VDA 2005), Washington DC, 2005, pp. 175-186
[12] F.Calabrese, F.Pereira, G.DiLorenzo, L.Liu, C.Ratti, The geography of taste: analyzing cell-phone mobility and social events. In: Int. Conf. Pervasive Computing 2010, pp.22-37
[13] T.Crnovrsanin, C.Muelder, C.Correa, K.-L.Ma. Proximity-based visualization of movement trace data. In: VAST 2009, pp. 11-18
[14] S.Dodge, R.Weibel, E.Forootan, Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems, 33(6), 2009, pp.419-434
[15] R.A.Enguehard, R.Devillers, O.Hoeber. Geovisualization of fishing vessel movement patterns using hybrid fractal/velocity signatures. In: GeoViz Hamburg 2011, online proceedings, http://www.geomatikhamburg.de/geoviz/
[16] M.Ester, H.-P.Kriegel, J.Sander, X.Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In: ACM KDD 1996, pp. 226-231.
[17] A.Frank. Qualitative spatial reasoning about distances and directions in geographical space. Journal of Visual Languages and Computing, 1992, 3, pp. 343-371
[18] A.Fredrikson, C.North, C.Plaisant, B.Shneiderman. Temporal, geographical and categorical aggregations viewed through coordinated displays: a case study with highway incident data. In Proc. Workshop on New Paradigms in information Visualization and Manipulation. ACM, 1999, 26-34.
[19] F.Giannotti, M.Nanni, F.Pinelli, D.Pedreschi. Trajectory pattern mining. In: KDD 2007, pp. 330-339
[20] H.Guo, Z.Wang, B.Yu, H.Zhao, X.Yuan. TripVista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: PacificVis 2011, pp. 163-170
[21] R.H.Güting, M.Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
[22] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84), pp. 47-57, 1984
[23] T.Hägerstrand. What about people in regional science? Papers, Regional Science Association, 24, 1970, pp. 7-21.
[24] J.D.Hamilton. Time series analysis. Princeton University Press, 1994
[25] M.Harrower, C.A.Brewer: Colorbrewer.org: An online tool for selecting color schemes for maps. The Cartographic Journal 40(1): 27-37, 2003.
[26] C.Hurter, B.Tissoires, S.Conversy. FromDaDy: Spreading aircraft trajectories across views to support iterative queries. IEEE Transactions on Visualization and Computer Graphics, 15(6), 2009, pp. 1017- 1024
[27] P.Kalnis, N.Mamoulis, S.Bakiras. On discovering moving clusters in spatio-temporal data. In: Advances in spatial and temporal databases 2005. LNCS 3633, 364-381
[28] J. Kim. Events as property exemplifications. In: M.Brand, D.Walton (eds.). Action Theory, Reidel, Dordrecht, 1976, pp. 159-177
[29] M.-J.Kraak, The space-time cube revisited from a geovisualization perspective. In: Proc. 21st Int. Cartographic Conference, Durban, 2003, pp.1988-1995
[30] P.Laube, S.Imfeld, R.Weibel. Discovering relative motion patterns in groups of moving point objects. International Journal Geographic Information Science, 19(6), 2005, pp. 639-668
[31] P.A.Longley, M.F.Goodchild, D.J.Maguire, D.W.Rhind. Geographical Information Systems. Vol. 1: Principles and Technical Issues, Second Edition, John Wiley & Sons, New York, USA, 1999
[32] J.Macedo, C.Vangenot, W.Othman, N.Pelekis, E.Frentzos, B.Kuijpers, I.Ntoutsi, S.Spaccapietra, Y.Theodoridis. Trajectory data models. In F.Giannotti & D.Pedreschi (eds.). Mobility, Data Mining and Privacy - Geographic Knowledge Discovery, Springer, Berlin, 2008, pp. 123-150
[33] I. Peca, G. Fuchs, K. Vrotsou, N. Andrienko, G. Andrienko. Scalable Cluster Analysis of Spatial Events. In: Proceedings of International Workshop on Visual Analytics (EuroVA 2012), pp.19-23
[34] J.F.Roddick, M.Spiliopoulou. A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering, 14(4), 2002, pp. 750-767
[35] R.Scheepens, N.Willems, H. van de Wetering, J.J. van Wijk. Interactive visualization of multivariate trajectory data with density maps. In: PacificVis 2011, pp. 147-154
[36] J.Wood, J.Dykes, A.Slingsby, Visualization of origins, destinations and flows with OD maps. The Cartographic Journal, 2010, 47(2), pp.117-129
[37] M.F.Worboys. Event-oriented approaches to geographic phenomena. International Journal of Geographic Information Science, 19(1), 2005, pp. 1-28
[38] Z.Yan, J.Macedo, C.Parent, S.Spaccapietra. Trajectory Ontologies and Queries. Transactions in GIS, 12(1), 2008, pp. 75 - 91 Natalia Andrienko has been working at GMD, now Fraunhofer IAIS, since 1997. Since 2007, she is a lead scientist responsible for the visual analytics research. She co-authored the monograph 'Exploratory Analysis of Spatial and Temporal Data', over 50 peer-reviewed journal papers, over 20 book chapters and more than 100 conference papers. She received best paper awards at the AGILE 2006 and IEEE VAST 2011 and 2012 conferences, best poster awards at AGILE 2007 and ACM GIS 2011, and VAST challenge award 2008.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:216401,
	title = {Scalable analysis of movement data for extracting and exploring significant places},
	author = {Andrienko G. and Andrienko N. and Hurter C. and Rinzivillo S. and Wroebel S.},
	publisher = {IEEE Computer Society,, New York, NY , Stati Uniti d'America},
	doi = {10.1109/tvcg.2012.311},
	journal = {IEEE transactions on visualization and computer graphics (Online)},
	volume = {19},
	pages = {1078–1094},
	year = {2013}
}