2018
Journal article  Open Access

Quasi-orthorectified projection for the measurement of red gorgonian colonies

Pavoni G., Palma M., Callieri M., Dellepiane M., Cerrano C., Pantaleo U., Scopigno R.

Underwater 3D Measurements  Ecological monitoring  Multi-view stereo survey  Paramuricea clavata 

This study presents a practical method to estimate dimensions of Paramuricea clavata colonies using generic photographic datasets collected across wide areas. Paramuricea clavata is a non-rigid, tree-like octocoral; this morphology greatly affects the quality of the sea fans multi-view stereo matching reconstruction, resulting in hazy and incoherent clouds, full of "false" points with random orientation. Therefore, the standard procedure to take measurements over a reconstructed textured surface in 3D space is impractical. Our method overcomes this problem by using quasi-orthorectified images, produced by projecting registered photos on the plane that best fits the point cloud of the colony. The assessments of the measures collected have been performed comparing ground truth data set and time series images of the same set of colonies. The measurement errors fall below the requirements for this type of ecological observations. Compared to previous works, the presented method does not require a detailed reconstruction of individual colonies, but relies on a global multi-view stereo reconstruction performed through a comprehensive photographic coverage of the area of interest, using a low-cost pre-calibrated camera. This approach drastically reduces the time spent working on the field, helping practitioners and scientists in improving efficiency and accuracy in their monitoring plans.

Source: The international archives of the photogrammetry, remote sensing and spatial information sciences (Print) 42 (2018): 853–860. doi:10.5194/isprs-archives-XLII-2-853-2018

Publisher: ISPRS Council., [London]


Ballesteros, E., 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and marine biology: an annual review 44, pp. 123-195.
Bennecke, S., Kwasnitschka, T., Metaxas, A. and Dullo, W.-C., 2016. In situ growth rates of deep-water octocorals determined from 3d photogrammetric reconstructions. Coral Reefs 35(4), pp. 1227-1239.
Burns, J., Delparte, D., Kapono, L., Belt, M., Gates, R. and Takabayashi, M., 2016. Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3d reconstruction techniques. Methods in Oceanography 15-16, pp. 49 - 59. Computer Vision in Oceanography.
and Schiaparelli, S., 2010. Gold coral (savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodiversity and Conservation 19(1), pp. 153-167.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. and Ranzuglia, G., 2008. Meshlab: an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter Conference, pp. 129-136.
Drap, P., Merad, D., Mahiddine, A., Seinturier, J., Gerenton, P., Daniela, P., Bo, J.-M., Bianchimani, O. and Garrabou, J., 2013.
Drap, P., Royer, J. P., Nawaf, M. M., Saccone, M., Merad, D., Lo´pez-Sanz, A` ., Ledoux, J. B. and Garrabou, J., 2017. Underwater Photogrammetry, Coded Target and Plenoptic Technology: a Set of Tools for Monitoring Red Coral in Mediterranean Sea in the Framework of the “perfect” Project. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences pp. 275-282.
Ferrari, R., Figueira, W. F., Pratchett, M. S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S. S., Atwood, T. B. and Byrne, M., 2017. 3d photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific reports 7(1), pp. 16737.
Friedman, A., Pizarro, O. and Williams, S. B., 2010. Rugosity, slope and aspect from bathymetric stereo image reconstructions.
OCEANS'10 IEEE SYDNEY pp. 1-9.
Gutierrez-Heredia L, Benzoni F, M. E. R. E., 2016. End to end digitisation and analysis of three-dimensional coral models, from communities to corallites. PLoS ONE 11(2): e0149641.
Linares, C., Coma, R., Mariani, S., D´ıaz, D., Hereu, B. and Zabala, M., 2008. Early life history of the mediterranean gorgonian paramuricea clavata: implications for population dynamics. Invertebrate Biology 127(1), pp. 1-11.
Linares, C., Doak, D. F., Coma, R., Diaz, D. and Zabala, M., 2007. Life history and viability of a long-lived marine invertebrate: The octocoral paramuricea clavata. Ecology 88(4), pp. 918-928.
Mistri, M. and Ceccherelli, V. U., 1994. Growth and secondary production of the mediterranean gorgonian paramuricea clavata.
Marine Ecology Progress Series pp. 291-296.
Palma, M., Rivas Casado, M., Pantaleo, U. and Cerrano, C., 2017.
Pizarro, O., Friedman, A., Bryson, M., Williams, S. B. and Madin, J., 2017. A simple, fast, and repeatable survey method for underwater visual 3d benthic mapping and monitoring. Ecology and Evolution 7(6), pp. 1770-1782.
Ranzuglia, G., Callieri, M., Dellepiane, M., Cignoni, P. and Scopigno, R., 2013. Meshlab as a complete tool for the integration of photos and color with high resolution 3d geometry data.
In: CAA 2012 Conference Proceedings, Pallas Publications - Amsterdam University Press (AUP), pp. 406-416.
Sa´nchez, J. A., 2015. Diversity and Evolution of Octocoral Animal Forests at Both Sides of Tropical America. Springer International Publishing, Cham, pp. 1-33.
Shortis, M., Harvey, E. and Abdo, D., 2009. A review of underwater stereo-image measurement for marine biology and ecology applications. 47, pp. 257-292.
Thornton, B., Bodenmann, A., Pizarro, O., Williams, S. B., Friedman, A., Nakajima, R., Takai, K., Motoki, K., o Watsuji, T., Hirayama, H., Matsui, Y., Watanabe, H. and Ura, T., 2016. Biometric assessment of deep-sea vent megabenthic communities using multi-resolution 3d image reconstructions. Deep Sea Research Part I: Oceanographic Research Papers 116, pp. 200 - 219.
Valisano, L., Notari, F., Mori, M. and Cerrano, C., 2016. Temporal variability of sedimentation rates and mobile fauna inside and outside a gorgonian garden. Marine Ecology 37(6), pp. 1303- 1314.
Vezzulli, L., Previati, M., Pruzzo, C., Marchese, A., Bourne, D. G. and Cerrano, C., 2010. Vibrio infections triggering mass mortality events in a warming mediterranean sea. Environmental microbiology 12(7), pp. 2007-2019.
Young GC, Dey S, R. A. E. D., 2017. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3d models. PLoS ONE 12(4): e0175341.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:392694,
	title = {Quasi-orthorectified projection for the measurement of red gorgonian colonies},
	author = {Pavoni G. and Palma M. and Callieri M. and Dellepiane M. and Cerrano C. and Pantaleo U. and Scopigno R.},
	publisher = {ISPRS Council., [London]},
	doi = {10.5194/isprs-archives-xlii-2-853-2018},
	journal = {The international archives of the photogrammetry, remote sensing and spatial information sciences (Print)},
	volume = {42},
	pages = {853–860},
	year = {2018}
}