2014
Journal article  Open Access

Estimating energy savings in smart street lighting by using an adaptive control system

Chessa S, Escolar S, Carretero J, Marinescu M

Lighting system  Smart cities  Simulació  Enllumenat--Aspectes ambientals  Mètodes de  Embedded and cyber-physical systems  Agents  Street lighting  Article Subject  Wireless sensor and actuator networks  Distributed decision models  Computer Networks and Communications  :Enginyeria electrònica [Àrees temàtiques de la UPC]  Energy saving  Smart city  Simulation methods  General Engineering  IERC  Sensors and actuators  Sensor networks 

The driving force behind the smart city initiative is to offer better, more specialized services which can improve the quality of life of the citizens while promoting sustainability. To achieve both of these apparently competing goals, services must be increasingly autonomous and continuously adaptive to changes in their environment and the information coming from other services. In this paper we focus on smart lighting, a relevant application domain for which we propose an intelligent street light control system based on adaptive behavior rules. We evaluate our approach by using a simulator which combines wireless sensor networks and belief-desire-intention (BDI) agents to enable a precise simulation of both the city infrastructure and the adaptive behavior that it implements. The results reveal energy savings of close to 35% when the lighting system implements an adaptive behavior as opposed to a rigid, predefined behavior.

Source: INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, vol. 971587


Dutt, G. S.. Illumination and sustainable development. Part I: technology and economics. Energy for Sustainable Development. 1994; 1 (1): 23-35
Stockman, M.. Light-emitting devices: from nano-optics to street lights. Nature Materials. 2004; 3 (7): 423-424
Murff, W., Kuntz, null. Winter 2011: sustainable cities: Salem street lights.
Leonard, P.. Memorandum: street lights.
Martirano, L.. A smart lighting control to save energy. ; 1: 132-138
Elejoste, P., Angulo, I., Perallos, A., Chertudi, A., Zuazola, I. J. G., Moreno, A., Azpilicueta, L., Astrain, J. J., Falcone, F., Villadangos, J.. An easy to deploy street light control system based on wireless communication and led technology. Sensors. 2013; 13 (5): 6492-6523
Huynh, T. P., Tan, Y. K., Tseng, K. J.. Energy-aware wireless sensor network with ambient intelligence for smart LED lighting system control. : 2923-2928
Cao, X., Chen, J., Xiao, Y., Sun, Y.. Building-environment control with wireless sensor and actuator networks: centralized versus distributed. IEEE Transactions on Industrial Electronics. 2010; 57 (11): 3596-3605
Sandhu, J. S.. Wireless sensor networks for commercial lighting control: decision making with multi-agent systems. : 131-140
Wu, Y., Shi, C., Zhang, X., Yang, W.. Design of new intelligent street light control system. : 1423-1427
Jun, L. Y. X., Yonglong, P.. Study of energy-saving solar street light using led based on mcu-controlled. Test & Measurement Technology. 2008 (10): 29-31
IERC—Internet of Things, null. The Internet of Things 2012—New Horizons.
Weiser, M., Baecker, R. M., Grudin, J., Buxton, W. A. S., Greenberg, S.. The computer for the 21st century. Human-Computer Interaction. 1995: 933-940
Bose, R. K., Anandalingam, G.. Sustainable urban energy-environment management with multiple objectives. Energy. 1996; 21 (4): 305-318
Zavadskas, E. K., Kaklauskas, A., Kaklauskiene, J.. Modelling and forecasting of a rational and sustainable development of Vilnius: emphasis on pollution. International Journal of Environment and Pollution. 2007; 30 (3-4): 485-500
Jabareen, Y. R.. Sustainable urban forms: their typologies, models, and concepts. Journal of Planning Education and Research. 2006; 26 (1): 38-52
Vinyals, M., Rodriguez-Aguilar, J. A., Cerquides, J.. A survey on sensor networks from a multiagent perspective. The Computer Journal. 2011; 54 (3): 455-470
Kephart, J. O., Chess, D. M.. The vision of autonomic computing. Computer. 2003; 36 (1): 4-50
Schneider, K., Schuele, T., Trapp, M.. Verifying the adaptation behavior of embedded systems. : 16-22
Hazelwood, K.. Process-level virtualization for runtime adaptation of embedded software. : 895-900
Cámara, J., Salaün, G., Canal, C., Ouederni, M.. Interactive specification and verification of behavioral adaptation contracts. Information and Software Technology. 2012; 54 (7): 701-723
Fleurey, F., Morin, B., Solberg, A.. A model-driven approach to develop adaptive firmwares. : 168-177
Jennings, N. R.. On agent-based software engineering. Artificial Intelligence. 2000; 117 (2): 277-296
Rao, A. S., Georgeff, M. P.. Bdi agents: from theory to practice. : 312-319
Rao, A. S.. AgentSpeak(L): BDI agents speak out in a logical computable language. : 42-55
Bordini, R. H., Hbner, J. F.. Bdi agent programming in agentspeak using jason. ; 3900: 143-164
Morris, A.. SAMSON: strong multi-agent simulation of wireless sensor networks [Ph.D. dissertation]. 2008
Corporation, M.. Tmote sky. Low Power Wireless Sensor Module.
Escolar, S., Chessa, S., Carretero, J., Marinescu, M. C.. Cross layer adaptation of check intervals in low power listening mac protocols for lifetime improvement in wireless sensor networks. Sensors. 2012; 12 (8): 511-510
Escolar, S., Chessa, S., Carretero, J.. Energy management in solar cells powered wireless sensor networks for quality of service optimization. Personal and Ubiquitous Computing. 2013
Earth, B. B.. Ls led street lights—ls8.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:344070,
	title = {Estimating energy savings in smart street lighting by using an adaptive control system},
	author = {Chessa S and Escolar S and Carretero J and Marinescu M},
	doi = {10.1155/2014/971587},
	year = {2014}
}