Lucchese C., Nardini F. M., Orlando S., Perego R., Trani S.
Computer Science - Machine Learning efficiency/effectiveness trade-offs Settore INF/01 - Informatica Efficiency/effectiveness trade-offs query-level earlyexit Query-level earlyexit additive regression trees Additive regression trees Information Retrieval (cs.IR) FOS: Computer and information sciences Computer Science - Information Retrieval Learning to rank Machine Learning (cs.LG) learning to rank 68P20
Search engine ranking pipelines are commonly based on large ensembles of machine-learned decision trees. The tight constraints on query response time recently motivated researchers to investigate algorithms to make faster the traversal of the additive ensemble or to early terminate the evaluation of documents that are unlikely to be ranked among the top-k. In this paper, we investigate the novel problem of query-level early exiting, aimed at deciding the profitability of early stopping the traversal of the ranking ensemble for all the candidate documents to be scored for a query, by simply returning a ranking based on the additive scores computed by a limited portion of the ensemble. Besides the obvious advantage on query latency and throughput, we address the possible positive impact on ranking effectiveness. To this end, we study the actual contribution of incremental portions of the tree ensemble to the ranking of the top-k documents scored for a given query. Our main finding is that queries exhibit different behaviors as scores are accumulated during the traversal of the ensemble and that query-level early stopping can remarkably improve ranking quality. We present a reproducible and comprehensive experimental evaluation, conducted on two public datasets, showing that query-level early exiting achieves an overall gain of up to 7.5% in terms of NDCG@10 with a speedup of the scoring process of up to 2.2x.
Source: 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2033–2036, Online Conference, 25-30 July, 2020
@inproceedings{oai:it.cnr:prodotti:440220, title = {Query-level early exit for additive learning-to-rank ensembles}, author = {Lucchese C. and Nardini F. M. and Orlando S. and Perego R. and Trani S.}, doi = {10.1145/3397271.3401256 and 10.48550/arxiv.2004.14641}, booktitle = {43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2033–2036, Online Conference, 25-30 July, 2020}, year = {2020} }