[1] F. Ho ing, T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76 (4) (2013) 046602.
[2] B. Regner, D. Vucinic, C. Domnisoru, T. Bartol, M. Hetzer, D. Tartakovsky, T. Sejnowski, Anomalous di usion of single particles in cytoplasm, Biophys. J. 104 (2013) 16521660.
[3] C. Manzo, M. Garcia-Parajo, A review of progress in single particle tracking: from methods to biophysical insights, Rep. Progr. Phys. 78 (2015) 124601.
[4] I. M. Tolic-N rrelykke, E.-L. Munteanu, G. Thon, L. Odderhede, K. BergS rensen, Anomalous di usion in living yeast cells, Phys. Rev. Lett. 93 (2004) 078102.
[5] I. Golding, E. C. Cox, Physical nature of bacterial cytoplasm, Phys. Rev. Lett. 96 (2006) 098102.
[6] A. Javer, N. Kuwada, Z. Long, V. Benza, K. Dorfman, P. Wiggins, P. Cicuta, M. Lagomarsino, Persistent super-di usive motion of escherichia coli chromosomal loci, Nat. Comm. 5 (2014) 3854.
[7] A. Caspi, R. Granek, M. Elbaum, Enhanced di usion in active intracellular transport, Phys. Rev. Lett. 85 (2000) 5655{5658.
[8] A. V. Weigel, B. Simon, M. M. Tamkun, D. Krapf, Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking, Proc. Natl. Acad. Sci. USA 108 (16) (2011) 6438{43.
[9] M. Javanainen, H. Hammaren, L. Monticelli, J.-H. Jeon, M. S. Miettinen, H. Martinez-Seara, R. Metzler, I. Vattulainen, Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes, Faraday Discuss. 161 (2013) 39741.
[10] D. Krapf, G. Campagnola, K. Nepal, O. Peersen, Strange kinetics of bulkmediated di usion on lipid bilayers, Phys. Chem. Chem. Phys. 18 (2016) 12633.
[11] R. Metzler, J.-H. Jeon, A. Cherstvy, Non{Brownian di usion in lipid membranes: Experiments and simulations, Biochim. Biophys. Acta 1858 (2016) 24512467.
[12] M. Tamm, L. Nazarov, A. Gavrilov, A. Chertovich, Anomalous di usion in fractal globules, Phys. Rev. Lett. 114 (2015) 178102.
[13] H. Risken, The Fokker{Planck Equation. Methods of Solution and Applications, 2nd Edition, Springer-Verlag, 1989.
[14] G. I. Taylor, Di usion by continuous movements, Proc. London Math. Soc. 20 (1) (1921) 196{211.
[15] A. Caspi, R. Granek, M. Elbaum, Di usion and directed motion in cellular transport, Phys. Rev. E 66 (2002) 011916.
[16] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai, Y. Garini, Transient anomalous di usion of telomeres in the nucleus of mammalian cells, Phys. Rev. Lett. 103 (2009) 018102.
[18] J. F. Reverey, J.-H. Jeon, H. Bao, M. Leippe, R. Metzler, C. SelhuberUnkel, Superdi usion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic acanthamoeba castellanii, Sci. Rep. 5 (2015) 11690.
[19] J.-P. Bouchaud, A. Georges, Anomalous di usion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep. 195 (4-5) (1990) 127{293.
[20] R. Metzler, J. Klafter, The random walk's guide to anomalous di usion: a fractional dynamics approach, Phys. Rep. 339 (1) (2000) 1{77.
[21] S. Burov, J.-H. Jeon, R. Metzler, E. Barkai, Single particle tracking in systems showing anomalous di usion: the role of weak ergodicity breaking, Phys. Chem. Chem. Phys. 13 (5) (2011) 1800{1812.
[22] R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai, Anomalous di usion models and their properties: non{stationarity, non{ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys. 16 (2014) 24128.
[23] B. B. Mandelbrot, J. W. Van Ness, Fractional brownian motions, fractional noises and applications, SIAM Rev. 10 (4) (1968) 422{437.
[24] Y. He, S. Burov, R. Metzler, E. Barkai, Random time-scale invariant diffusion and transport coe cients, Phys. Rev. Lett. 101 (2008) 058101.
[25] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. BergS rensen, L. Oddershede, R. Metzler, In vivo anomalous di usion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett. 106 (4) (2011) 048103.
[26] M. Magdziarz, A. Weron, K. Burnecki, J. Klafter, Fractional Brownian Motion versus the Continuous{Time Random Walk: A simple test for subdi usive dynamics, Phys. Rev. Lett. 103 (2009) 180602.
[27] E. Kepten, I. Bronshtein, Y. Garini, Ergodicity convergence test suggests telomere motion obeys fractional dynamics, Phys. Rev. E 83 (4, part 1) (2011) 041919.
[28] K. Burnecki, E. Kepten, J. Janczura, I. Bronshtein, Y. Garini, A. Weron, Universal algorithm for identi cation of Fractional Brownian Motion. a case of telomere subdi usion, Biophys. J. 103 (9) (2012) 1839{1847.
[29] A. Cherstvy, A. Chechkin, R. Metzler, Anomalous di usion and ergodicity breaking in heterogeneous di usion processes, New J. Phys. 15 (2013) 083039.
[30] P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. Garc a-Parajo, M. Lewenstein, G. J. Lapeyre Jr, Nonergodic subdi usion from brownian motion in an inhomogeneous medium, Phys. Rev. Lett. 112 (15) (2014) 150603.
[31] M. V. Chubynsky, G. W. Slater, Di using di usivity: A model for anomalous, yet brownian, di usion, Phys. Rev. Lett. 113 (2014) 098302.
[32] A. Cherstvy, R. Metzler, Anomalous di usion in time- uctuating nonstationary di usivity landscapes, Phys. Chem. Chem. Phys. 18 (2016) 23840.
[33] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, R. Metzler, Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian di usion, New J. Phys. 20 (2018) 043044.
[34] R. Rozenfeld, J. Luczka, P. Talkner, Brownian motion in a uctuating medium, Phys. Lett. A 249 (1998) 409{414.
[35] J. Luczka, P. Talkner, P. Hanggi, Di usion of Brownian particles governed by uctuating friction, Physica A 278 (2000) 18{31.
[36] J. Luczka, B. Zaborek, Brownian motion: A case of temperature uctuations, Acta Phys. Pol. B 35 (2004) 2151{2164.
[37] M. Ausloos, R. Lambiotte, Brownian particle having a uctuating mass, Phys. Rev. E 73 (2006) 011105.
[38] C. Beck, Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett. 87 (2001) 180601.
[39] C. Beck, E. G. D. Cohen, Superstatistics, thermodynamics, and uctuations, Physica A 322 (2003) 267{275.
[40] P. Paradisi, R. Cesari, P. Grigolini, Superstatistics and renewal critical events, Cent. Eur. J. Phys. 7 (2009) 421{431.
[41] O.C. Akin, P. Paradisi, P. Grigolini, Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems, J. Stat. Mech.: Theory Exp. (2009) P01013.
[42] R. Jain, K. Sebastian, Di using di usivity: a new derivation and comparison with simulations, J. Chem. Sci. 129 (7) (2017) 929{937.
[43] A. V. Chechkin, F. Seno, R. Metzler, I. M. Sokolov, Brownian yet nonGaussian di usion: From superstatistics to subordination of di using diffusivities, Phys. Rev. X 7 (2017) 021002.
[44] Y. Lanoiselee, D. Grebenkov, A model of non-Gaussian di usion in heterogeneous media, J. Phys. A: Math. Theor. 51 (14) (2018) 145602.
[45] W. R. Schneider, Grey noise, in: S. Albeverio, et al. (Eds.), Stochastic processes, physics and geometry, World Sci. Publ., Teaneck, NJ, 1990, pp. 676{681.
[46] W. Schneider, Grey noise, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 261{282.
[47] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Di usion to Time Series Analysis, Lambert Academic Publishing, 2011, ph.D. Thesis, Physics Department, University of Bologna, 2008.
[48] A. Mura, M. Taqqu, F. Mainardi, Non-Markovian di usion equations and processes: Analysis and simulations, Physica A 387 (2008) 5033{5064.
[49] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous di usion, J. Phys. A: Math. Theor. 41 (2008) 285003.
[50] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous di usion in physics, Integr. Transf. Spec. F. 20 (3{4) (2009) 185{198.
[51] G. Pagnini, A. Mura, F. Mainardi, Generalized fractional master equation for self-similar stochastic processes modelling anomalous di usion, Int. J. Stoch. Anal. 2012 (2012) 427383.
[52] G. Pagnini, A. Mura, F. Mainardi, Two-particle anomalous di usion: Probability density functions and self-similar stochastic processes, Phil. Trans. R. Soc. A 371 (2013) 20120154.
[53] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional di usion processes: A tutorial survey, Int. J. Di er. Equations 2010 (2010) 104505.
[54] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional di usion processes, Fract. Calc. Appl. Anal. 16 (2) (2013) 436{453.
[55] G. Pagnini, Short note on the emergence of fractional kinetics, Physica A 409 (2014) 29{34.
[56] R. Goren o, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional di usion, Chem. Phys. 284 (2002) 521{541.
[57] R. Goren o, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional di usion: probability distributions and random walk models, Physica A 305 (1-2) (2002) 106{112.
[58] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the spacetime fractional di usion equation, Fract. Calc. Appl. Anal. 4 (2) (2001) 153{192.
[59] G. Pagnini, Erdelyi{Kober fractional di usion, Fract. Calc. Appl. Anal. 15 (1) (2012) 117{127.
[60] G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional di usion equation, Fract. Calc. Appl. Anal. 19 (2) (2016) 408{440.
[61] C. Li, Q. Yi, J. Kurths, Fractional convection, J. Comput. Nonlinear Dynam. 13 (1) (2017) 011004.
[62] D. Molina-Garc a, T. M. Pham, P. Paradisi, C. Manzo, G. Pagnini, Fractional kinetics emerging from ergodicity breaking in random media, Phys. Rev. E 94 (2016) 052147.
[63] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating skewed stable random variables, J. Amer. Statist. Assoc. 71 (1976) 340{ 344.
[64] R. Weron, On the Chambers{Mallows{Stuck method for simulating skewed stable random variables, Statist. Probab. Lett. 28 (1996) 165{171, corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96 Corr.pdf or http://www.im.pwr.wroc.pl/ hugo/RePEc/wuu/wpaper/HSC 96 01.pdf.
[65] J. H. P. Schulz, E. Barkai, R. Metzler, Aging e ects and population splitting in single-particle trajectory averages, Phys. Rev. Lett. 110 (2013) 020602.
[66] S. Gheorghiu, M.-O. Coppens, Heterogeneity explains features of anomalous thermodynamics and statistics, Proc. Natl. Acad. Sci. USA 101 (2004) 15852{15856.
0 0 1 t
[3] B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4) (1968) 422{437.
[4] T. Dieker, Simulation of fractional Brownian motion, 2004, ph.D. Thesis, Physics Department of Mathematical Sciences, University of Twente. URL http://www.columbia.edu/~ad3217/fbm/thesis.pdf
[5] W. Feller, An Introduction to Probability Theory and its Applications, 2nd Edition, Vol. 2, Wiley, New York, 1971.
[6] P. E. Kloeden, E. Platen, Numerical solution of Stochastic Di erential Equations, Springer-Verlag, 1992.
[7] D. J. Thomson, Criteria for the selection of stochastic models of particle trajectories in turbulent ows, J. Fluid Mech. 180 (1987) 529{556.
[15] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous di usion, J. Phys. A: Math. Theor. 41 (2008) 285003.
[16] A. Mura, M. Taqqu, F. Mainardi, Non-Markovian di usion equations and processes: Analysis and simulations, Physica A 387 (2008) 5033{5064.
[17] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous di usion in physics, Integr. Transf. Spec. F. 20 (3{4) (2009) 185{198.
[18] M. Grothaus, F. Jahnert, F. Riemann, J. da Silva, Mittag{Le er analysis I: Construction and characterization, J. Funct. Anal. 268 (2015) 1876{1903.
[19] M. Grothaus, F. Jahnert, Mittag{Le er analysis II: Application to the fractional heat equation, J. Funct. Anal. 270 (2016) 2732{2768.
[20] F. Mainardi, G. Pagnini, R. Goren o, Mellin transform and subordination laws in fractional di usion processes, Fract. Calc. Appl. Anal. 6 (4) (2003) 441{459.
[21] F. Biagini, Y. Hu, B. ksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2008.
[22] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional di usion processes: A tutorial survey, Int. J. Di er. Equations 2010 (2010) 104505.
[23] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional di usion processes, Fract. Calc. Appl. Anal. 16 (2) (2013) 436{453.
[24] F. Mainardi, G. Pagnini, R. Goren o, Mellin convolution for subordinated stable processes, J. Math. Sci. 132 (5) (2006) 637{642.
1 Hofling F, Franosch T 2013 Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys.76, 046602 (10.1088/0034-4885/76/4/046602)23481518
2 Regner B, Vucinic D, Domnisoru C, Bartol T, Hetzer M, Tartakovsky D, Sejnowski T 2013 Anomalous diffusion of single particles in cytoplasm. Biophys. J.104, 1652–1660. (10.1016/j.bpj.2013.01.049)23601312
3 Manzo C, Garcia-Parajo M 2015 A review of progress in single particle tracking: from methods to biophysical insights. Rep. Progr. Phys.78, 124601 (10.1088/0034-4885/78/12/124601)
4 Tolić-Nørrelykke IM, Munteanu E-L, Thon G, Odderhede L, Berg-Sørensen K 2004 Anomalous diffusion in living yeast cells. Phys. Rev. Lett.93, 078102 (10.1103/PhysRevLett.93.078102)15324280
5 Golding I, Cox EC 2006 Physical nature of bacterial cytoplasm. Phys. Rev. Lett.96, 098102 (10.1103/PhysRevLett.96.098102)16606319
6 Javer A, Kuwada N, Long Z, Benza V, Dorfman K, Wiggins P, Cicuta P, Lagomarsino M 2014 Persistent super-diffusive motion of Escherichia coli chromosomal loci. Nat. Comm.5, 3854 (10.1038/ncomms4854)
7 Caspi A, Granek R, Elbaum M 2000 Enhanced diffusion in active intracellular transport. Phys. Rev. Lett.85, 5655–5658. (10.1103/PhysRevLett.85.5655)11136070
8 Weigel AV, Simon B, Tamkun MM, Krapf D 2011 Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl Acad. Sci. USA 108, 6438–6443. (10.1073/pnas.1016325108)21464280
9 Javanainen M, Hammaren H, Monticelli L, Jeon J-H, Miettinen MS, Martinez-Seara H, Metzler R, Vattulainen I 2013 Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss.161, 397–341. (10.1039/C2FD20085F)23805752
10 Krapf D, Campagnola G, Nepal K, Peersen O 2016 Strange kinetics of bulk-mediated diffusion on lipid bilayers. Phys. Chem. Chem. Phys.18, 12 633–12 641. (10.1039/C6CP00937A)
11 Metzler R, Jeon J-H, Cherstvy A 2016 Non-Brownian diffusion in lipid membranes: experiments and simulations. Biochim. Biophys. Acta 1858, 2451–2467. (10.1016/j.bbamem.2016.01.022)26826272
12 Tamm M, Nazarov L, Gavrilov A, Chertovich A 2015 Anomalous diffusion in fractal globules. Phys. Rev. Lett.114, 178102 (10.1103/PhysRevLett.114.178102)25978267
13 Risken H 1989 The Fokker–Planck equation. Methods of solution and applications, 2nd edn Berlin, Germany: Springer.
14 Taylor GI 1921 Diffusion by continuous movements. Proc. London Math. Soc.20, 196–211. (10.1112/plms/s2-20.1.196)
15 Caspi A, Granek R, Elbaum M 2002 Diffusion and directed motion in cellular transport. Phys. Rev. E 66, 011916 (10.1103/PhysRevE.66.011916)
16 Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E, Garini Y 2009 Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett.103, 018102 (10.1103/PhysRevLett.103.018102)19659180
17 Robert D, Nguyen T, Gallet F, Wilhelm C 2010 In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS ONE 5, e10046 (10.1371/journal.pone.0010046)20386607
18 Reverey JF, Jeon J-H, Bao H, Leippe M, Metzler R, Selhuber-Unkel C 2015 Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci. Rep.5, 11690 (10.1038/srep11690)26123798
19 Bouchaud J-P, Georges A 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep.195, 127–293. (10.1016/0370-1573(90)90099-n)
20 Metzler R, Klafter J 2000 The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.339, 1–77. (10.1016/S0370-1573(00)00070-3)
21 Burov S, Jeon J-H, Metzler R, Barkai E 2011 Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys. Chem. Chem. Phys.13, 1800–1812. (10.1039/c0cp01879a)21203639
22 Metzler R, Jeon J-H, Cherstvy AG, Barkai E 2014 Anomalous diffusion models and their properti es: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys.16, 24 128–24 164. (10.1039/c4cp03465a)
23 Mandelbrot BB, Van Ness JW 1968 Fractional Brownian motions, fractional noises and applications. SIAM Rev.10, 422–437. (10.1137/1010093)
24 He Y, Burov S, Metzler R, Barkai E 2008 Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett.101, 058101 (10.1103/PhysRevLett.101.058101)18764430
25 Jeon J-H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sørensen K, Oddershede L, Metzler R 2011 In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett.106, 048103 (10.1103/PhysRevLett.106.048103)21405366
26 Magdziarz M, Weron A, Burnecki K, Klafter J 2009 Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Phys. Rev. Lett.103, 180602 (10.1103/PhysRevLett.103.180602)19905793
27 Kepten E, Bronshtein I, Garini Y 2011 Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Phys. Rev. E 83, 041919 (10.1103/PhysRevE.83.041919)
28 Burnecki K, Kepten E, Janczura J, Bronshtein I, Garini Y, Weron A 2012 Universal algorithm for identification of fractional Brownian motion. a case of telomere subdiffusion. Biophys. J.103, 1839–1847. (10.1016/j.bpj.2012.09.040)23199912
29 Cherstvy A, Chechkin A, Metzler R 2013 Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys.15, 083039 (10.1088/1367-2630/15/8/083039)
30 Massignan P, Manzo C, Torreno-Pina JA, García-Parajo MF, Lewenstein M, Lapeyre GJ Jr 2014 Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium. Phys. Rev. Lett.112, 150603 (10.1103/PhysRevLett.112.150603)24785018
31 Chubynsky MV, Slater GW 2014 Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett.113, 098302 (10.1103/PhysRevLett.113.098302)25216011
32 Cherstvy A, Metzler R 2016 Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. Phys. Chem. Chem. Phys.18, 23840 (10.1039/C6CP03101C)27523709
33 Sposini V, Chechkin AV, Seno F, Pagnini G, Metzler R 2018 Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion. New J. Phys.20, 043044 (10.1088/1367-2630/aab696)
34 Rozenfeld R, Łuczka J, Talkner P 1998 Brownian motion in a fluctuating medium. Phys. Lett. A 249, 409–414. (10.1016/S0375-9601(98)00823-8)
35Łuczka J, Talkner P, Hänggi P 2000 Diffusion of Brownian particles governed by fluctuating friction. Physica. A 278, 18–31. (10.1016/s0378-4371(99)00574-9)
36Łuczka J, Zaborek B 2004 Brownian motion: a case of temperature fluctuations. Acta Phys. Pol. B 35, 2151–2164.
37 Ausloos M, Lambiotte R 2006 Brownian particle having a fluctuating mass. Phys. Rev. E 73, 011105 (10.1103/PhysRevE.73.011105)
38 Beck C 2001 Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett.87, 180601 (10.1103/PhysRevLett.87.180601)
39 Beck C, Cohen EGD 2003 Superstatistics, thermodynamics, and fluctuations. Physica A 322, 267–275.
40 Paradisi P, Cesari R, Grigolini P 2009 Superstatistics and renewal critical events. Cent. Eur. J. Phys.7, 421–431. (10.2478/s11534-009-0069-x)
41 Akin O, Paradisi P, Grigolini P 2009 Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems. J. Stat. Mech.: Theory Exp.2009, P01013 (10.1088/1742-5468/2009/01/p01013)
42 Jain R, Sebastian K 2017 Diffusing diffusivity: a new derivation and comparison with simulations. J. Chem. Sci.129, 929–937. (10.1007/s12039-017-1308-0)
43 Chechkin AV, Seno F, Metzler R, Sokolov IM 2017 Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 7, 021002 (10.1103/physrevx.7.021002)
44 Lanoiselée Y, Grebenkov D 2018 A model of non-Gaussian diffusion in heterogeneous media. J. Phys. A: Math. Theor.51, 145602 (10.1088/1751-8121/aab15f)
45 Schneider WR 1990 Grey noise. In Stochastic processes, physics and geometry (eds Albeverio S, Casati G, Cattaneo U, Merlini D and Moresi R), pp. 676–681. Singapore: World Scientific Publishers.
46 Schneider WR 1990 Grey noise. In Ideas and Methods in Mathematical Analysis, Stochastics and Applications (Oslo, 1988), Vol. I (eds Albeverio S, Fenstad JE, Holden H and Lindstrøm T), pp. 261–282. Cambridge: Cambridge University Press.
47 Mura A 2008 Non-Markovian stochastic processes and their applications: from anomalous diffusion to time series analysis. Lambert Academic Publishing, 2011, PhD thesis, Physics Department, University of Bologna.
48 Mura A, Taqqu M, Mainardi F 2008 Non-Markovian diffusion equations and processes: analysis and simulations. Physica A 387, 5033–5064. (10.1016/j.physa.2008.04.035)
49 Mura A, Pagnini G 2008 Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor.41, 285003 (10.1088/1751-8113/41/28/285003)
50 Mura A, Mainardi F 2009 A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. F.20, 185–198. (10.1080/1065 2460802567517)
51 Pagnini G, Mura A, Mainardi F 2012 Generalized fractional master equation for self-similar stochastic processes modelling anomalous diffusion. Int. J. Stoch. Anal.2012, 427383 (10.1155/2012/427383)
52 Pagnini G, Mura A, Mainardi F 2013 Two-particle anomalous diffusion: probability density functions and self-similar stochastic processes. Phil. Trans. R. Soc. A 371, 20120154 (10.1098/rsta.2012.0154)23547231
53 Mainardi F, Mura A, Pagnini G 2010 The M-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ.2010, 104505 (10.1155/2010/104505)
54 Pagnini G 2013 The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal.16, 436–453. (10.1155/2010/104505)
55 Pagnini G 2014 Short note on the emergence of fractional kinetics. Physica A 409, 29–34. (10.1016/j.physa.2014.03.079)
56 Gorenflo R, Mainardi F, Moretti D, Pagnini G, Paradisi P 2002 Discrete random walk models for space–time fractional diffusion. Chem. Phys.284, 521–541. (10.1016/S0301-0104(02)00714-0)
57 Gorenflo R, Mainardi F, Moretti D, Pagnini G, Paradisi P 2002 Fractional diffusion: probability distributions and random walk models. Physica A 305, 106–112. (10.1016/s0378-4371(01)00647-1)
58 Mainardi F, Luchko Y, Pagnini G 2001 The fundamental solution of the space–time fractional diffusion equation. Fract. Calc. Appl. Anal.4, 153–192.
59 Pagnini G 2012 Erdélyi–Kober fractional diffusion. Fract. Calc. Appl. Anal.15, 117–127. (10.2478/s13540-012-0008-1)
60 Pagnini G, Paradisi P 2016 A stochastic solution with Gaussian stationary increments of the symmetric space–time fractional diffusion equation. Fract. Calc. Appl. Anal.19, 408–440. (10.1515/fca-2016-0022)
61 Li C, Yi Q, Kurths J 2017 Fractional convection. J. Comput. Nonlinear Dynam.13, 011004 (10.1115/1.4037414)
62 Molina-García D, Pham TM, Paradisi P, Manzo C, Pagnini G 2016 Fractional kinetics emerging from ergodicity breaking in random media. Phys. Rev. E 94, 052147 (10.1103/PhysRevE.94.052147)27967076
63 Chambers JM, Mallows CL, Stuck BW 1976 A method for simulating skewed stable random variables. J. Amer. Statist. Assoc.71, 340–344. (10.1080/01621459.1976.10480344)
64 Weron R 1996 On the Chambers–Mallows–Stuck method for simulating skewed stable ran dom variables. Statist. Probab. Lett.28, 165–171. Corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96_Corr.pdf or http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_96_01.pdf. (10.1016/0167-7152(95)00113-1)
65 Schulz JHP, Barkai E, Metzler R 2013 Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett.110, 020602 (10.1103/PhysRevLett.110.020602)23383881
66 Gheorghiu S, Coppens M-O 2004 Heterogeneity explains features of ‘anomalous’ thermodynamics and statistics. Proc. Natl Acad. Sci. USA 101, 15 852–15 856. (10.1073/pnas.0407191101)