Rinzivillo S., Turini F.
Data mining algorithm Spatial transactions Artificial Intelligence Spatial dataset Information Systems Hardware and Architecture Geographical information systems Qualitative spatial relations Software Computer Networks and Communications
We propose a general mechanism to represent the spatial transactions in a way that allows the use of the existing data mining methods. Our proposal allows the analyst to exploit the layered structure of geographical information systems in order to define the layers of interest and the relevant spatial relations among them. Given a reference object, it is possible to describe its neighborhood by considering the attribute of the object itself and the objects related by the chosen relations. The resulting spatial transactions may be either considered like "traditional" transactions, by considering only the qualitative spatial relations, or their spatial extension can be exploited during the data mining process. We explore both these cases. First we tackle the problem of classifying a spatial dataset, by taking into account the spatial component of the data to compute the statistical measure (i.e., the entropy) necessary to learn the model. Then, we consider the task of extracting spatial association rules, by focusing on the qualitative representation of the spatial relations. The feasibility of the process has been tested by implementing the proposed method on top of a GIS tool and by analyzing real world data. © Springer Science+Business Media, LLC 2007.
Source: Journal of intelligent information systems 28 (2007): 1–22. doi:10.1007/s10844-006-0001-4
Publisher: Kluwer Academic Publishers, Boston , Paesi Bassi
@article{oai:it.cnr:prodotti:183553, title = {Knowledge discovery from spatial transactions}, author = {Rinzivillo S. and Turini F.}, publisher = {Kluwer Academic Publishers, Boston , Paesi Bassi}, doi = {10.1007/s10844-006-0001-4}, journal = {Journal of intelligent information systems}, volume = {28}, pages = {1–22}, year = {2007} }