1. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C (eds) VLDB. Morgan Kaufmann, San Mateo, pp 487-499
2. Alvares LO, Bogorny V, Kuijpers B, de Macedo JAF, Moelans B, Vaisman A (2007) A model for enriching trajectories with semantic geographical information. In: ACM-GIS. ACM Press, New York, pp 162-169
3. Andersson M, Gudmundsson J, Laube P, Wolle T (2008) Reporting leaders and followers among trajectories of moving point objects. GeoInformatica 12:497-528. doi:10.1007/s10707- 007-0037-9
4. Baglioni M, de Macêdo JAF, Renso C, Trasarti R, Wachowicz M (2009) Towards semantic interpretation of movement behavior. In: Sester M, Bernard L, Paelke V (eds) AGILE conference, lecture notes in geoinformation and cartography. Springer, Berlin, pp 271-288
5. Bogorny V, Kuijpers B, Alvares LO (2009) ST-DMQL: a semantic trajectory data mining query language. Int J Geogr Inf Sci 23:1245-1276
6. Cao H, Mamoulis N, Cheung DW (2006) Discovery of collocation episodes in spatiotemporal data. In: ICDM. IEEE Comput Soc, Los Alamitos, pp 823-827
7. Dodge S, Weibel R, Lautenschutz A (2008) Towards a taxonomy of movement patterns. Inf Vis 8:240-252
8. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Berkhin P, Caruana R, Wu X (eds) KDD. ACM Press, New York, pp 330-339
9. Gudmundsson J, van Kreveld MJ (2006) Computing longest duration flocks in trajectory data. In: de By RA, Nittel S (eds) GIS. ACM Press, New York, pp 35-42
10. Hägerstrand T (1970) What about people in regional science?. Pap Reg Sci 24(1):6-21
11. Kim DJ, Park KH, Bien Z (2007) Hierarchical longitudinal controller for rear-end collision avoidance. IEEE Trans Ind Electron 54:805-817
12. Laube P, Imfeld S, Weibel R (2005) Discovering relative motion patterns in groups of moving point objects. Int J Geogr Inf Sci 19(6):639-668
13. Laube P, van Kreveld M, Imfeld S (2005) Finding REMO: detecting relative motion patterns in geospatial lifelines. Springer, Berlin
14. Lee SW, Lee BH, Lee KD (1999) A configuration space approach to collision avoidance of a two-robot system. Robotica 17:131- 141
15. Liu YH, Shi CJ (2005) A fuzzy-neural inference network for ship collision avoidance. In: Proceedings of 2005 international conference on machine learning and cybernetics. IEEE Comput Soc, Los Alamitos, pp 4754-4754
16. Nedevschi S, Bota S, Tomiuc C (2009) Stereo-based pedestrian detection for collision-avoidance applications. Trans Intell Transp Syst 10:380-391
17. Ong R, Wachowicz M, Nanni M, Renso C (2010) From pattern discovery to pattern interpretation in movement data. In: Fan W, Hsu W, Webb GI, Liu B, Zhang C, Gunopulos D, Wu X (eds) ICDM workshops. IEEE Comput Soc, Los Alamitos, pp 527-534
18. Palma AT, Bogorny V, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. In: ACMSAC. ACM Press, New York, pp 863-868
19. Rocha JAMR, Times VC, Oliveira G, Alvares LO, Bogorny V (2010) DB-SMOT: a direction-based spatio-temporal clustering method. In: IEEE conference of intelligent systems. IEEE Press, New York, pp 114-119
20. Shandy S, Valasek J (2001) Intelligent agent for aircraft collision avoidance. In: Proceedings of AIAA guidance, navigation, and control conference. American Institute of Aeronautics and Astronautics, Washington, pp 1-11
21. Suh SH, Bishop AB (1988) Collision-avoidance trajectory planning using tube concept: analysis and simulation. J Robot Syst 5(6):497-525
22. Suh SH, Kim MS (1992) An algebraic approach to collisionavoidance trajectory planning for dual-robot systems: formulation and optimization. Robotica 10(02):173-182