2018
Journal article  Open Access

Community discovery in dynamic networks: A survey

Rossetti G., Cazabet R.

A.1  Temporal networks  Social and Information Networks (cs.SI)  [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]  General Computer Science  E.1  FOS: Physical sciences  I.5.3  Computer Science - Social and Information Networks  G.2.2  [INFO.INFO-SI]Computer Science [cs]/Social and Information Networks [cs.SI]  Dynamic networks  FOS: Computer and information sciences  Physics - Physics and Society  Theoretical Computer Science  Community discovery  Physics and Society (physics.soc-ph) 

Several research studies have shown that complex networks modeling real-world phenomena are characterized by striking properties: (i) they are organized according to community structure, and (ii) their structure evolves with time. Many researchers have worked on methods that can efficiently unveil substructures in complex networks, giving birth to the field of community discovery. A novel and fascinating problem started capturing researcher interest recently: the identification of evolving communities. Dynamic networks can be used to model the evolution of a system: nodes and edges are mutable, and their presence, or absence, deeply impacts the community structure that composes them. This survey aims to present the distinctive features and challenges of dynamic community discovery and propose a classification of published approaches. As a "user manual," this work organizes state-of-the-art methodologies into a taxonomy, based on their rationale, and their specific instantiation. Given a definition of network dynamics, desired community characteristics, and analytical needs, this survey will support researchers to identify the set of approaches that best fit their needs. The proposed classification could also help researchers choose in which direction to orient their future research.

Source: ACM computing surveys 51 (2018). doi:10.1145/3172867

Publisher: Association for Computing Machinery,, New York, N.Y. , Stati Uniti d'America


Appendix Methods in this category: (Bota et al., 2011; Bourqui et al., 2009; Brodka et al., 2013; Dhouioui and Akaichi, 2014; Greene et al., 2010; Hopcroft et al., 2004; I_lhan and O guducu, 2015; Palla et al., 2007; Rosvall and Bergstrom, 2010; Taka oli et al., 2011). Refer to Appendix A.1 for description of methods.
2. Iterative Core-nodes based approaches Methods in this category: (Alvari et al., 2014; Aynaud and Guillaume, 2010; Bansal et al., 2011; Gorke et al., 2010; Miller and Eliassi-Rad, 2009; Shang et al., 2014) Methods in this category: (Crane and Dempsey, 2015; Folino and Pizzuti, 2010; Gong et al., 2012; Gorke et al., 2013; Kawadia and Sreenivasan, 2012; Lin et al., 2008, 2009; Sun et al., 2010; Tang et al., 2008; Yang et al., 2009; Zhou et al., 2007) Refer to Appendix B.3 for description of methods. Methods in this category: (Himmel et al., 2016; Jdidia et al., 2007; Mucha et al., 2010; Viard et al., 2016) Refer to Appendix C.4 for description of methods.
Url Papers (Goldberg et al., 2011; Ma and Huang, 2013; Miller
http://goo.gl/5R9ozh aTnadka oli et al., 2011; Tang Eliassi-Rad, 2009; et al., 2008; Wang et al., 2008)
http://arxiv.org (Wang et al., 2008) (Gorke et al., 2013; I_lhan and Oguducu, 2015; Shang et al., 2014)
http://imdb.com (Goldberg et al., 2011) Dataset Url Papers (Falkowski et al., 2008; Ferry and Bumgarner, 2012;
ENRON https://goo.gl/gQqo8l 2F0o1li4n;oLiaentdalP.,iz2z0u1t1i,; S2h0a1n0g, et al., 2014; Tang et al., 2008; Wang et al., 2008)
KIT https://goo.gl/gQqo8l (Gorke et al., 2013) (Folino and Pizzuti, 2010,
Mobile phone - 2014; Gong et al., 2012; Guo et al., 2014)
wiki-Vote https://goo.gl/pzhst2 (Shang et al., 2014) Senate/Court Voting - (Crane and Dempsey, 2015) Thiers http://goo.gl/jhAcY8 (Viard et al., 2016) CAIDA http://goo.gl/72y9iT (2M00i9ll)er and Eliassi-Rad, Facebook http://goo.gl/8J18cw (Rossetti et al., 2016a) Weibo http://goo.gl/bcoQiy (Rossetti et al., 2016a) Digg http://goo.gl/ybKQS2 (2Z0a15k)rzewska and Bader, Slashdot http://goo.gl/FGgEiM (2Z0a15k)rzewska and Bader, Agarwal, M. K., K. Ramamritham, and M. Bhide, 2012, Proceedings of the VLDB Endowment 5(10), 980.
Alon, U., 2007, Nature Reviews Genetics 8(6), 450.
Alvari, H., A. Hajibagheri, and G. Sukthankar, 2014, in IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE), pp. 101{107.
Asur, S., S. Parthasarathy, and D. Ucar, 2009, Transactions on Knowledge Discovery from Data (TKDD) 3(4), 16.
Aynaud, T., E. Fleury, J.-L. Guillaume, and Q. Wang, 2013, in Dynamics On and Of Complex Networks, Volume 2 (Springer), pp. 159{200.
Aynaud, T., and J.-L. Guillaume, 2010, in Proceedings of the 8th international symposium on Modeling and optimization in mobile, ad hoc and wireless networks (WiOpt) (IEEE), pp. 513{519.
Aynaud, T., and J.-L. Guillaume, 2011, in Proceedings of the 5th Social Network Mining and Analysis Workshop, SNAKDD workshop.
Bansal, S., S. Bhowmick, and P. Paymal, 2011, in Complex Networks (Springer), pp. 196{207.
Barabasi, A.-L., and R. Albert, 1999, Science 286(5439), 509.
Beiro, M. G., J. R. Busch, and J. I. Alvarez-Hamelin, 2010, in Latin-American Workshop on Dynamic Networks (LAWDN), pp. 4{p.
Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, 2008, Journal of statistical mechanics: theory and experiment 2008(10), P10008.
Bota, A., L. Csizmadia, and A. Pluhar, 2010, Matcos .
Bota, A., M. Kresz, and A. Pluhar, 2011, Acta Cybernetica 20(1), 35.
Bourqui, R., F. Gilbert, P. Simonetto, F. Zaidi, U. Sharan, and F. Jourdan, 2009, in International Conference on Advances in Social Network Analysis and Mining (ASONAM) (IEEE), pp. 83{88.
Boyack, K., K. Borner, and R. Klavans, 2008, Scientometrics 79(1), 45.
Brandes, U., M. Gaertler, and D. Wagner, 2003, Algorithmsesa , 568.
Brodka, P., S. Saganowski, and P. Kazienko, 2013, Social Network Analysis and Mining 3(1), 1.
Casteigts, A., P. Flocchini, W. Quattrociocchi, and N. Santoro, 2012, International Journal of Parallel, Emergent and Distributed Systems 27(5), 387.
Cazabet, R., and F. Amblard, 2011, in IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (IEEE), volume 2, pp. 402{ 408.
Cazabet, R., and F. Amblard, 2014, in Encyclopedia of Social Network Analysis and Mining (Springer), pp. 404{414.
Cazabet, R., F. Amblard, and C. Hanachi, 2010, in 2nd International Conference on Social Computing (SocialCom) (IEEE), pp. 309{314.
Cazabet, R., R. Chawuthai, and H. Takeda, 2015, arXiv preprint arXiv:1502.05149 .
Cazabet, R., H. Takeda, M. Hamasaki, and F. Amblard, 2012, Social Network Analysis and Mining 2(4), 361.
Chen, Z., K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova, 2010, in International Conference on Data Mining Workshops (ICDMW) (IEEE), pp. 318{327.
Clauset, A., M. E. Newman, and C. Moore, 2004, Physical review E 70(6), 066111.
Condon, A., and R. M. Karp, 2001, Random Structures and Algorithms 18(2), 116.
Coscia, M., F. Giannotti, and D. Pedreschi, 2011, Statistical Analysis and Data Mining: The ASA Data Science Journal 4(5), 512.
Crane, H., and W. Dempsey, 2015, arXiv preprint arXiv:1509.09254 .
Crane, H., et al., 2014, The Annals of Probability 42(5), 1952.
Creusefond, J., T. Largillier, and S. Peyronnet, 2016, in International Conference and School on Network Science (Springer), pp. 111{125.
Danon, L., A. D az-Guilera, and A. Arenas, 2006, Journal of Statistical Mechanics: Theory and Experiment 2006(11), P11010.
Dhouioui, Z., and J. Akaichi, 2013, in International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE), pp. 17{23.
Dhouioui, Z., and J. Akaichi, 2014, in IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE), pp. 764{770.
Duan, D., Y. Li, Y. Jin, and Z. Lu, 2009, in Proceedings of the 1st International workshop on Complex Networks meet Information & Knowledge Management (ACM), pp. 11{18.
Duan, D., Y. Li, R. Li, and Z. Lu, 2012, Arti cial Intelligence Review , 1.
Duhan, N., A. Sharma, and K. K. Bhatia, 2009, in International Advance Computing Conference (IACC) (IEEE), pp. 1530{1537.
Ester, M., H.-P. Kriegel, J. Sander, X. Xu, et al., 1996, in Kdd, volume 96, pp. 226{231.
Falkowski, T., J. Bartelheimer, and M. Spiliopoulou, 2006, in IEEE/WIC/ACM International Conference on Web Intelligence (WI) (IEEE), pp. 52{58.
Falkowski, T., A. Barth, and M. Spiliopoulou, 2008, AMCIS 2008 Proceedings , 29.
Falkowski, T., and M. Spiliopoulou, 2007, KI 21(3), 23.
Fan, Y., M. Li, P. Zhang, J. Wu, and Z. Di, 2007, Physica A: Statistical Mechanics and its Applications 377(1), 363.
Ferry, J. P., and J. O. Bumgarner, 2012, arXiv preprint arXiv:1201.1512 .
Flake, G. W., S. Lawrence, and C. L. Giles, 2000, in Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (ACM), pp. 150{ 160.
Folino, F., and C. Pizzuti, 2010, in Proceedings of the 12th annual conference on Genetic and evolutionary computation (ACM), pp. 535{536.
Folino, F., and C. Pizzuti, 2014, Transactions on Knowledge and Data Engineering 26(8), 1838.
Fortunato, S., 2010, Physics reports 486(3), 75.
Fortunato, S., and M. Barthelemy, 2007, Proceedings of the National Academy of Sciences 104(1), 36.
Fortunato, S., and D. Hric, 2016, Physics Reports 659, 1.
Frishman, Y., and A. Tal, 2004, in Symposium on Information Visualization (INFOVIS) (IEEE), pp. 191{198.
Gaertler, M., R. Gorke, and D. Wagner, 2007, Algorithmic Aspects in Information and Management , 11.
Gauvin, L., A. Panisson, and C. Cattuto, 2014, PloS one 9(1), e86028.
Getoor, L., and C. P. Diehl, 2005, ACM SIGKDD Explorations Newsletter 7(2), 3.
Girvan, M., and M. E. Newman, 2002, Proceedings of the national academy of sciences 99(12), 7821.
Gliwa, B., S. Saganowski, A. Zygmunt, P. Brodka, P. Kazienko, and J. Kozak, 2012, in Proceedings of the International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE), pp. 1201{1206.
Goldberg, M., M. Magdon-Ismail, S. Nambirajan, and J. Thompson, 2011, in 3rd International Conference on Privacy, Security, Risk and Trust (PASSAT) and 3rd Inernational Conference on Social Computing (SocialCom) (IEEE), pp. 780{783.
Gong, M.-G., L.-J. Zhang, J.-J. Ma, and L.-C. Jiao, 2012, Journal of Computer Science and Technology 27(3), 455.
Gorke, R., T. Hartmann, and D. Wagner, 2012, Journal of Graph Algorithms and Applications 16(2), 411, ISSN 1526- 1719.
Gorke, R., P. Maillard, A. Schumm, C. Staudt, and D. Wagner, 2013, Journal of Experimental Algorithmics (JEA) 18, 1.
Gorke, R., P. Maillard, C. Staudt, and D. Wagner, 2010, SEA 6049, 436.
Granell, C., R. K. Darst, A. Arenas, S. Fortunato, and S. Gomez, 2015, Physical Review E 92(1), 012805.
Greene, D., D. Doyle, and P. Cunningham, 2010, in International conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE), pp. 176{183.
Guimera, R., M. Sales-Pardo, and L. A. N. Amaral, 2007, Physical Review E 76(3), 036102.
Guo, C., J. Wang, and Z. Zhang, 2014, Physica A: Statistical Mechanics and its Applications 413, 565.
Gupta, M., J. Gao, Y. Sun, and J. Han, 2012, in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM), pp. 859{ 867.
Hartmann, T., A. Kappes, and D. Wagner, 2016, in Algorithm Engineering (Springer), pp. 280{329.
Henderson, K., and T. Eliassi-Rad, 2009, in Proceedings of the ACM symposium on Applied Computing (ACM), pp. 1456{1461.
Herlau, T., M. M rup, and M. N. Schmidt, 2013, in Proceedings of the 30th International Conference on International Conference on Machine Learning, pp. 960{968.
Himmel, A.-S., H. Molter, R. Niedermeier, and M. Sorge, 2016, in IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE), pp. 337{344.
Holme, P., and J. Saramaki, 2012, Physics reports 519(3), 97.
Hopcroft, J., O. Khan, B. Kulis, and B. Selman, 2004, Proceedings of the National Academy of Sciences 101(Suppl 1), 5249.
Hu, Y., S. G. Kobourov, and S. Veeramoni, 2012, in Paci c Visualization Symposium (Paci cVis) (IEEE), pp. 33{40.
I_lhan, N., and S. G. Oguducu, 2015, in Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (ACM), pp. 1509{1516.
Ishiguro, K., T. Iwata, N. Ueda, and J. B. Tenenbaum, 2010, in Advances in Neural Information Processing Systems, pp. 919{927.
Jdidia, M. B., C. Robardet, and E. Fleury, 2007, in 2nd International Conference on Digital Information Management (ICDIM) (IEEE), volume 2, pp. 744{749.
Kawadia, V., and S. Sreenivasan, 2012, arXiv preprint arXiv:1203.5126 , 1.
Kim, M.-S., and J. Han, 2009, Proceedings of the VLDB Endowment 2(1), 622.
Kovanen, L., M. Karsai, K. Kaski, J. Kertesz, and J. Saramaki, 2011, Journal of Statistical Mechanics: Theory and Experiment 2011(11), P11005.
Lancichinetti, A., and S. Fortunato, 2009, Physical Review E 80(1), 016118.
Lancichinetti, A., S. Fortunato, and J. Kertesz, 2009, New Journal of Physics 11(3), 033015.
Lancichinetti, A., S. Fortunato, and F. Radicchi, 2008, Physical review E 78(4), 046110.
Lee, P., L. V. Lakshmanan, and E. E. Milios, 2014, in 30th International Conference on Data Engineering (ICDE) (IEEE), pp. 3{14.
Lee, S., L. E. Rocha, F. Liljeros, and P. Holme, 2012, PloS one 7(5), e36439.
Leskovec, J., J. Kleinberg, and C. Faloutsos, 2005, in Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (ACM), pp. 177{ 187.
Li, X.-L., A. Tan, S. Y. Philip, and S.-K. Ng, 2011, in International Conference on Database Systems for Advanced Applications (DASFAA) (Springer), pp. 22{37.
Lin, Y.-R., Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, 2008, in Proceedings of the 17th international conference on World Wide Web (WWW) (ACM), pp. 685{694.
Lin, Y.-R., Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, 2009, Transactions on Knowledge Discovery from Data (TKDD) 3(2), 8.
Lin, Y.-R., J. Sun, N. Cao, and S. Liu, 2010, in Proceedings of the International Conference on Data Mining (SIAM), pp. 418{429.
Ma, H.-S., and J.-W. Huang, 2013, in Proceedings of the 7th Workshop on Social Network Mining and Analysis (ACM), p. 6.
Masuda, N., and R. Lambiotte, 2016, A guide to temporal networks, volume 4 (World Scienti c).
Matias, C., and V. Miele, 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology) .
Matias, C., T. Rebafka, and F. Villers, 2015.
McDaid, A. F., D. Greene, and N. Hurley, 2011, arXiv preprint arXiv:1110.2515 .
Miller, K., and T. Eliassi-Rad, 2009, in NIPS Workshop.
Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, 2002, Science 298(5594), 824.
Mucha, P. J., T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, 2010, science 328(5980), 876.
Newbold, P., 1983, Journal of Forecasting (pre-1986) 2(1), 23.
Newman, M. E., 2003, SIAM review 45(2), 167.
Newman, M. E., 2004, Physical review E 69(6), 066133.
Newman, M. E., and M. Girvan, 2004, Physical review E 69(2), 026113.
Nguyen, N. P., T. N. Dinh, S. Tokala, and M. T. Thai, 2011a, in Proceedings of the 17th annual international conference on Mobile computing and networking (ACM), pp. 85{96.
Nguyen, N. P., T. N. Dinh, Y. Xuan, and M. T. Thai, 2011b, in 30th International Conference on Computer Communications (INFOCOM) (IEEE), pp. 2282{2290.
Palla, G., A.-L. Barabasi, and T. Vicsek, 2007, Nature 446(7136), 664.
Palla, G., I. Derenyi, I. Farkas, and T. Vicsek, 2005, Nature 435(7043), 814.
Peel, L., D. B. Larremore, and A. Clauset, 2017, Science Advances 3(5), e1602548.
Pons, P., and M. Latapy, 2006, J. Graph Algorithms Appl. 10(2), 191.
Radicchi, F., C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, 2004, Proceedings of the National Academy of Sciences of the United States of America 101(9), 2658.
Reda, K., C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-Wolf, 2011, in Computer Graphics Forum (Wiley Online Library), volume 30, pp. 1061{1070.
Renyi, A., and P. Erdos, 1959, Publicationes Mathematicae 6(290-297), 5.
Rossetti, G., 2015, Social Network Dynamics, Ph.D. thesis, Computer Science Dept. University of Pisa.
Rossetti, G., 2017, Journal of Complex Networks .
Rossetti, G., R. Guidotti, D. Pennacchioli, D. Pedreschi, and F. Giannotti, 2015, in Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (ACM), pp. 553{558.
Rossetti, G., L. Pappalardo, D. Pedreschi, and F. Giannotti, 2016a, Machine Learning , 1.
Rossetti, G., L. Pappalardo, and S. Rinzivillo, 2016b, in Complex Networks VII (Springer), pp. 133{144.
Rosvall, M., and C. T. Bergstrom, 2010, PloS one 5(1), e8694.
Saganowski, S., B. Gliwa, P. Brodka, A. Zygmunt, P. Kazienko, and J. Kozlak, 2015, Entropy 17(5), 3053.
Sawardecker, E. N., M. Sales-Pardo, and L. A. N. Amaral, 2009, The European Physical Journal B-Condensed Matter and Complex Systems 67(3), 277.
Schlitter, N., and T. Falkowski, 2009, in International Conference on Advances in Social Network Analysis and Mining (ASONAM) (IEEE), pp. 243{248.
Shang, J., L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, and C. Wu, 2014, arXiv preprint arXiv:1407.2683 .
Shao, J., Z. Han, and Q. Yang, 2014, arXiv preprint arXiv:1409.7978 .
Shi, J., and J. Malik, 2000, Transactions on pattern analysis and machine intelligence 22(8), 888.
Sun, J., C. Faloutsos, S. Papadimitriou, and P. S. Yu, 2007, in Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM), pp. 687{696.
Sun, Y., J. Tang, J. Han, C. Chen, and M. Gupta, 2014, Transactions on Knowledge and Data Engineering (TKDE) 26(12), 2942.
Sun, Y., J. Tang, J. Han, M. Gupta, and B. Zhao, 2010, in Proceedings of the Eighth Workshop on Mining and Learning with Graphs (ACM), pp. 137{146.
Tabourier, L., A.-S. Libert, and R. Lambiotte, 2016, EPJ Data Science 5(1), 1.
Taka oli, M., F. Sangi, J. Fagnan, and O. R. Zaane, 2011, in 5th International Conference on Weblogs and Social Media (ICWSM) (AAAI), pp. 30{41.
Tan, B., F. Zhu, Q. Qu, and S. Liu, 2014, in International Conference on Web-Age Information Management (Springer), pp. 633{644.
Tang, L., H. Liu, J. Zhang, and Z. Nazeri, 2008, in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM), pp. 677{685.
Tantipathananandh, C., T. Berger-Wolf, and D. Kempe, 2007, in Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM), pp. 717{726.
Van Nguyen, M., M. Kirley, and R. Garc a-Flores, 2012, in Congress on Evolutionary Computation (CEC) (IEEE), pp. 1{8.
Vehlow, C., F. Beck, P. Auwarter, and D. Weiskopf, 2015, in Computer Graphics Forum (Wiley Online Library), volume 34, pp. 277{288.
Viard, T., M. Latapy, and C. Magnien, 2016, Theoretical Computer Science 609, 245.
Wang, Q., 2012, Detection de communautes recouvrantes dans des reseaux de terrain dynamiques, Ph.D. thesis, Lyon, Ecole normale superieure.
Wang, Y., B. Wu, and X. Pei, 2008, Advanced Data Mining and Applications , 229.
Watts, D. J., and S. H. Strogatz, 1998, Nature 393(6684), 440.
Xie, J., M. Chen, and B. K. Szymanski, 2013a, in Proceedings of the Workshop on Dynamic Networks Management and Mining (ACM), pp. 25{32.
Xie, J., S. Kelley, and B. K. Szymanski, 2013b, ACM Computing Surveys 45(4), 43.
Xie, J., and B. K. Szymanski, 2013, in 2nd Network Science Workshop (NSW) (IEEE), pp. 138{143.
Xu, H., Z. Wang, and W. Xiao, 2013a, in International Conference on Social Computing (SocialCom) (IEEE), pp. 154{ 161.
Xu, H., W. Xiao, D. Tang, J. Tang, and Z. Wang, 2013b, The Scienti c World Journal 2013.
Xu, K. S., and A. O. Hero, 2014, Journal of Selected Topics in Signal Processing 8(4), 552.
Yang, J., and J. Leskovec, 2014, Transactions on Intelligent Systems and Technology (TIST) 5(2), 26.
Yang, J., and J. Leskovec, 2015, Knowledge and Information Systems 42(1), 181.
Yang, T., Y. Chi, S. Zhu, Y. Gong, and R. Jin, 2009, in Proceedings of the International Conference on Data Mining (SIAM), pp. 990{1001.
Yang, T., Y. Chi, S. Zhu, Y. Gong, and R. Jin, 2011, Machine learning 82(2), 157.
Zakrzewska, A., and D. A. Bader, 2015, in Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (ACM), pp. 559{564.
Zhou, D., I. Councill, H. Zha, and C. L. Giles, 2007, in 7th International Conference on Data Mining (ICDM) (IEEE), pp. 745{750.
1. Partition update by Global optimization
Agarwal, M. K., K. Ramamritham, and M. Bhide, 2012, Proceedings of the VLDB Endowment 5(10), 980.
Bassett, D. S., M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J. Mucha, 2013, Citation: Chaos 23.
Bazzi, M., L. G. Jeub, A. Arenas, S. D. Howison, and M. A. Porter, 2016, arXiv preprint arXiv:1608.06196 .
Beck, F., M. Burch, S. Diehl, and D. Weiskopf, 2017, Computer Graphics Forum 36(1), 133, ISSN 1467-8659.
Braun, U., A. Schafer, H. Walter, S. Erk, N. RomanczukSeiferth, L. Haddad, J. I. Schweiger, O. Grimm, A. Heinz, H. Tost, A. Meyer-Lindenberg, and D. S. Bassett, 2015, Proceedings of the National Academy of Sciences 112(37), 11678.
Ghasemian, A., P. Zhang, A. Clauset, C. Moore, and L. Peel, 2016, Physical Review X 6(3), 031005.
Kivel, M., A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, 2014, Journal of Complex Networks 2(3), 203.
Latapy, M., T. Viard, and C. Magnien, 2017, arXiv preprint arXiv:1710.04073 .
Macon, K. T., P. J. Mucha, and M. A. Porter, 2012, Physica A: Statistical Mechanics and its Applications 391(1), 343 , ISSN 0378-4371.
Morini, M., P. Flandrin, E. Fleury, T. Venturini, and P. Jensen, 2017, arXiv preprint arXiv:1707.02114 .
Morini, M., P. Jensen, and P. Flandrin, 2015, in Sciences des donnees et humanites numeriques.
Peel, L., and A. Clauset, 2015, in AAAI, pp. 2914{2920.
Rossetti, G., L. Pappalardo, D. Pedreschi, and F. Giannotti, 2017, Machine Learning 106(8), 1213.
Rossetti, G., L. Pappalardo, and S. Rinzivillo, 2016, in Complex Networks VII (Springer), pp. 133{144.
Vehlow, C., F. Beck, P. Auwarter, and D. Weiskopf, 2015a, in Computer Graphics Forum (Wiley Online Library), volume 34, pp. 277{288.
Vehlow, C., F. Beck, and D. Weiskopf, 2015b, in Eurographics Conference on Visualization (EuroVis)-STARs (The Eurographics Association), volume 2.
Vehlow, C., F. Beck, and D. Weiskopf, 2016, IEEE Transactions on Visualization and Computer Graphics 22(10), 2343, ISSN 1077-2626.
Agarwal, M. K., Ramamritham, K., and Bhide, M. (2012). Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments. Proceedings of the VLDB Endowment, 5(10):980{991.
Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6):450{461.
Alvari, H., Hajibagheri, A., and Sukthankar, G. (2014). Community detection in dynamic social networks: A gametheoretic approach. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 101{107. IEEE.
Asur, S., Parthasarathy, S., and Ucar, D. (2009). An eventbased framework for characterizing the evolutionary behavior of interaction graphs. Transactions on Knowledge Discovery from Data (TKDD), 3(4):16.
Aynaud, T., Fleury, E., Guillaume, J.-L., and Wang, Q. (2013). Communities in evolving networks: de nitions, detection, and analysis techniques. In Dynamics On and Of Complex Networks, Volume 2, pages 159{200. Springer.
Aynaud, T. and Guillaume, J.-L. (2010). Static community detection algorithms for evolving networks. In Proceedings of the 8th international symposium on Modeling and optimization in mobile, ad hoc and wireless networks (WiOpt), pages 513{519. IEEE.
Aynaud, T. and Guillaume, J.-L. (2011). Multi-step community detection and hierarchical time segmentation in evolving networks. In Proceedings of the 5th Social Network Mining and Analysis Workshop, SNA-KDD workshop.
Bansal, S., Bhowmick, S., and Paymal, P. (2011). Fast community detection for dynamic complex networks. In Complex Networks, pages 196{207. Springer.
Barabasi, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):509{512.
Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M., and Mucha, P. J. (2013). Robust detection of dynamic community structure in networks. Citation: Chaos, 23.
Bazzi, M., Jeub, L. G., Arenas, A., Howison, S. D., and Porter, M. A. (2016). Generative benchmark models for mesoscale structure in multilayer networks. arXiv preprint arXiv:1608.06196.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A Taxonomy and Survey of Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133{159.
Beiro, M. G., Busch, J. R., and Alvarez-Hamelin, J. I. (2010). Visualizing communities in dynamic networks. In LatinAmerican Workshop on Dynamic Networks (LAWDN), pages 4{p.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008.
Bota, A., Csizmadia, L., and Pluhar, A. (2010). Community detection and its use in real graphs. Matcos.
Bota, A., Kresz, M., and Pluhar, A. (2011). Dynamic communities and their detection. Acta Cybernetica, 20(1):35{52.
Bourqui, R., Gilbert, F., Simonetto, P., Zaidi, F., Sharan, U., and Jourdan, F. (2009). Detecting structural changes and command hierarchies in dynamic social networks. In International Conference on Advances in Social Network Analysis and Mining (ASONAM), pages 83{88. IEEE.
Boyack, K., Borner, K., and Klavans, R. (2008). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1):45{60.
Brandes, U., Gaertler, M., and Wagner, D. (2003). Experiments on graph clustering algorithms. Algorithms-esa, pages 568{579.
Braun, U., Schafer, A., Walter, H., Erk, S., RomanczukSeiferth, N., Haddad, L., Schweiger, J. I., Grimm, O., Heinz, A., Tost, H., Meyer-Lindenberg, A., and Bassett, D. S. (2015). Dynamic recon guration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences, 112(37):11678{11683.
Brodka, P., Saganowski, S., and Kazienko, P. (2013). Ged: the method for group evolution discovery in social networks. Social Network Analysis and Mining, 3(1):1{14.
Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2012). Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387{408.
Cazabet, R. and Amblard, F. (2011). Simulate to detect: a multi-agent system for community detection. In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 2, pages 402{408. IEEE.
Cazabet, R. and Amblard, F. (2014). Dynamic community detection. In Encyclopedia of Social Network Analysis and Mining, pages 404{414. Springer.
Cazabet, R., Amblard, F., and Hanachi, C. (2010). Detection of overlapping communities in dynamical social networks. In 2nd International Conference on Social Computing (SocialCom), pages 309{314. IEEE.
Cazabet, R., Chawuthai, R., and Takeda, H. (2015). Using multiple-criteria methods to evaluate community partitions. arXiv preprint arXiv:1502.05149.
Cazabet, R., Takeda, H., Hamasaki, M., and Amblard, F. (2012). Using dynamic community detection to identify trends in user-generated content. Social Network Analysis and Mining, 2(4):361{371.
Chen, Z., Wilson, K. A., Jin, Y., Hendrix, W., and Samatova, N. F. (2010). Detecting and tracking community dynamics in evolutionary networks. In International Conference on Data Mining Workshops (ICDMW), pages 318{327. IEEE.
Clauset, A., Newman, M. E., and Moore, C. (2004). Finding community structure in very large networks. Physical review E, 70(6):066111.
Condon, A. and Karp, R. M. (2001). Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms, 18(2):116{140.
Coscia, M., Giannotti, F., and Pedreschi, D. (2011). A classication for community discovery methods in complex networks. Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(5):512{546.
Crane, H. and Dempsey, W. (2015). Community detection for interaction networks. arXiv preprint arXiv:1509.09254.
Crane, H. et al. (2014). The cut-and-paste process. The Annals of Probability, 42(5):1952{1979.
Creusefond, J., Largillier, T., and Peyronnet, S. (2016). On the evaluation potential of quality functions in community detection for di erent contexts. In International Conference and School on Network Science, pages 111{125. Springer.
Danon, L., D az-Guilera, A., and Arenas, A. (2006). The e ect of size heterogeneity on community identi cation in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2006(11):P11010.
Dhouioui, Z. and Akaichi, J. (2013). Overlapping community detection in social networks. In International Conference on Bioinformatics and Biomedicine (BIBM), pages 17{23. IEEE.
Dhouioui, Z. and Akaichi, J. (2014). Tracking dynamic community evolution in social networks. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 764{770. IEEE.
Duan, D., Li, Y., Jin, Y., and Lu, Z. (2009). Community mining on dynamic weighted directed graphs. In Proceedings of the 1st International workshop on Complex Networks meet Information & Knowledge Management, pages 11{18. ACM.
Duan, D., Li, Y., Li, R., and Lu, Z. (2012). Incremental k-clique clustering in dynamic social networks. Arti cial Intelligence Review, pages 1{19.
Duhan, N., Sharma, A., and Bhatia, K. K. (2009). Page ranking algorithms: a survey. In International Advance Computing Conference (IACC), pages 1530{1537. IEEE.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226{231.
Falkowski, T., Bartelheimer, J., and Spiliopoulou, M. (2006). Mining and visualizing the evolution of subgroups in social networks. In IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages 52{58. IEEE.
Falkowski, T., Barth, A., and Spiliopoulou, M. (2008). Studying community dynamics with an incremental graph mining algorithm. AMCIS 2008 Proceedings, page 29.
Falkowski, T. and Spiliopoulou, M. (2007). Data mining for community dynamics. KI, 21(3):23{29.
Fan, Y., Li, M., Zhang, P., Wu, J., and Di, Z. (2007). Accuracy and precision of methods for community identi cation in weighted networks. Physica A: Statistical Mechanics and its Applications, 377(1):363{372.
Ferry, J. P. and Bumgarner, J. O. (2012). Community detection and tracking on networks from a data fusion perspective. arXiv preprint arXiv:1201.1512.
Flake, G. W., Lawrence, S., and Giles, C. L. (2000). E cient identi cation of web communities. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 150{160. ACM.
Folino, F. and Pizzuti, C. (2010). Multiobjective evolutionary community detection for dynamic networks. In Proceedings of the 12th annual conference on Genetic and evolutionary computation, pages 535{536. ACM.
Folino, F. and Pizzuti, C. (2014). An evolutionary multiobjective approach for community discovery in dynamic networks. Transactions on Knowledge and Data Engineering, 26(8):1838{1852.
Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3):75{174.
Fortunato, S. and Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1):36{41.
Fortunato, S. and Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659:1{44.
Frishman, Y. and Tal, A. (2004). Dynamic drawing of clustered graphs. In Symposium on Information Visualization (INFOVIS), pages 191{198. IEEE.
Gaertler, M., Gorke, R., and Wagner, D. (2007). Signi cancedriven graph clustering. Algorithmic Aspects in Information and Management, pages 11{26.
Gauvin, L., Panisson, A., and Cattuto, C. (2014). Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PloS one, 9(1):e86028.
Getoor, L. and Diehl, C. P. (2005). Link mining: a survey. ACM SIGKDD Explorations Newsletter, 7(2):3{12.
Ghasemian, A., Zhang, P., Clauset, A., Moore, C., and Peel, L. (2016). Detectability thresholds and optimal algorithms for community structure in dynamic networks. Physical Review X, 6(3):031005.
Girvan, M. and Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12):7821{7826.
Gliwa, B., Saganowski, S., Zygmunt, A., Brodka, P., Kazienko, P., and Kozak, J. (2012). Identi cation of group changes in blogosphere. In Proceedings of the International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 1201{1206. IEEE.
Goldberg, M., Magdon-Ismail, M., Nambirajan, S., and Thompson, J. (2011). Tracking and predicting evolution of social communities. In 3rd International Conference on Privacy, Security, Risk and Trust (PASSAT) and 3rd Inernational Conference on Social Computing (SocialCom), pages 780{783. IEEE.
Gong, M.-G., Zhang, L.-J., Ma, J.-J., and Jiao, L.-C. (2012). Community detection in dynamic social networks based on multiobjective immune algorithm. Journal of Computer Science and Technology, 27(3):455{467.
Gorke, R., Hartmann, T., and Wagner, D. (2012). Dynamic Graph Clustering Using Minimum-Cut Trees. Journal of Graph Algorithms and Applications, 16(2):411{446.
Gorke, R., Maillard, P., Schumm, A., Staudt, C., and Wagner, D. (2013). Dynamic graph clustering combining modularity and smoothness. Journal of Experimental Algorithmics (JEA), 18:1{5.
Gorke, R., Maillard, P., Staudt, C., and Wagner, D. (2010). Modularity-driven clustering of dynamic graphs. SEA, 6049:436{448.
Granell, C., Darst, R. K., Arenas, A., Fortunato, S., and Gomez, S. (2015). Benchmark model to assess community structure in evolving networks. Physical Review E, 92(1):012805.
Greene, D., Doyle, D., and Cunningham, P. (2010). Tracking the evolution of communities in dynamic social networks. In International conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 176{183. IEEE.
Guimera, R., Sales-Pardo, M., and Amaral, L. A. N. (2007). Module identi cation in bipartite and directed networks. Physical Review E, 76(3):036102.
Guo, C., Wang, J., and Zhang, Z. (2014). Evolutionary community structure discovery in dynamic weighted networks. Physica A: Statistical Mechanics and its Applications, 413:565{576.
Gupta, M., Gao, J., Sun, Y., and Han, J. (2012). Integrating community matching and outlier detection for mining evolutionary community outliers. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 859{867. ACM.
Hartmann, T., Kappes, A., and Wagner, D. (2016). Clustering evolving networks. In Algorithm Engineering, pages 280{329. Springer.
Henderson, K. and Eliassi-Rad, T. (2009). Applying latent dirichlet allocation to group discovery in large graphs. In Proceedings of the ACM symposium on Applied Computing, pages 1456{1461. ACM.
Herlau, T., M rup, M., and Schmidt, M. N. (2013). Modeling temporal evolution and multiscale structure in networks. In Proceedings of the 30th International Conference on International Conference on Machine Learning, pages 960{968.
Himmel, A.-S., Molter, H., Niedermeier, R., and Sorge, M. (2016). Enumerating maximal cliques in temporal graphs. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 337{344. IEEE.
Holme, P. and Saramaki, J. (2012). Temporal networks. Physics reports, 519(3):97{125.
Hopcroft, J., Khan, O., Kulis, B., and Selman, B. (2004). Tracking evolving communities in large linked networks. Proceedings of the National Academy of Sciences, 101(Suppl 1):5249{5253.
Hu, Y., Kobourov, S. G., and Veeramoni, S. (2012). Embedding, clustering and coloring for dynamic maps. In Paci c Visualization Symposium (Paci cVis), pages 33{40. IEEE.
I_lhan, N. and Oguducu, S. G. (2015). Predicting community evolution based on time series modeling. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 1509{1516. ACM.
Ishiguro, K., Iwata, T., Ueda, N., and Tenenbaum, J. B. (2010). Dynamic in nite relational model for time-varying relational data analysis. In Advances in Neural Information Processing Systems, pages 919{927.
Jdidia, M. B., Robardet, C., and Fleury, E. (2007). Communities detection and analysis of their dynamics in collaborative networks. In 2nd International Conference on Digital Information Management (ICDIM), volume 2, pages 744{ 749. IEEE.
Kawadia, V. and Sreenivasan, S. (2012). Online detection of temporal communities in evolving networks by estrangement con nement. arXiv preprint arXiv:1203.5126, pages 1{21.
Kim, M.-S. and Han, J. (2009). A particle-and-density based evolutionary clustering method for dynamic networks. Proceedings of the VLDB Endowment, 2(1):622{633.
Kivel, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3):203{271.
Kovanen, L., Karsai, M., Kaski, K., Kertesz, J., and Saramaki, J. (2011). Temporal motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment, 2011(11):P11005.
Lancichinetti, A. and Fortunato, S. (2009). Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E, 80(1):016118.
Lancichinetti, A., Fortunato, S., and Kertesz, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3):033015.
Lancichinetti, A., Fortunato, S., and Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical review E, 78(4):046110.
Latapy, M., Viard, T., and Magnien, C. (2017). Stream graphs and link streams for the modeling of interactions over time. arXiv preprint arXiv:1710.04073.
Lee, P., Lakshmanan, L. V., and Milios, E. E. (2014). Incremental cluster evolution tracking from highly dynamic network data. In 30th International Conference on Data Engineering (ICDE), pages 3{14. IEEE.
Lee, S., Rocha, L. E., Liljeros, F., and Holme, P. (2012). Exploiting temporal network structures of human interaction to e ectively immunize populations. PloS one, 7(5):e36439.
Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over time: densi cation laws, shrinking diameters and possible explanations. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pages 177{187. ACM.
Li, X.-L., Tan, A., Philip, S. Y., and Ng, S.-K. (2011). Ecode: event-based community detection from social networks. In International Conference on Database Systems for Advanced Applications (DASFAA), pages 22{37. Springer.
Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., and Tseng, B. L. (2008). Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In Proceedings of the 17th international conference on World Wide Web (WWW), pages 685{694. ACM.
Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., and Tseng, B. L. (2009). Analyzing communities and their evolutions in dynamic social networks. Transactions on Knowledge Discovery from Data (TKDD), 3(2):8.
Lin, Y.-R., Sun, J., Cao, N., and Liu, S. (2010). Contextour: Contextual contour visual analysis on dynamic multirelational clustering. In Proceedings of the International Conference on Data Mining, pages 418{429. SIAM.
Ma, H.-S. and Huang, J.-W. (2013). Cut: Community update and tracking in dynamic social networks. In Proceedings of the 7th Workshop on Social Network Mining and Analysis, page 6. ACM.
Macon, K. T., Mucha, P. J., and Porter, M. A. (2012). Community structure in the united nations general assembly. Physica A: Statistical Mechanics and its Applications, 391(1):343 { 361.
Masuda, N. and Lambiotte, R. (2016). A guide to temporal networks, volume 4. World Scienti c.
Matias, C. and Miele, V. (2016). Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology).
Matias, C., Rebafka, T., and Villers, F. (2015). Estimation and clustering in a semiparametric poisson process stochastic block model for longitudinal networks.
Matias, C., Rebafka, T., and Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika, 105(3):665{680.
McDaid, A. F., Greene, D., and Hurley, N. (2011). Normalized mutual information to evaluate overlapping community nding algorithms. arXiv preprint arXiv:1110.2515.
Miller, K. and Eliassi-Rad, T. (2009). Continuous time group discovery in dynamic graphs. In NIPS Workshop.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594):824{827.
Morini, M., Flandrin, P., Fleury, E., Venturini, T., and Jensen, P. (2017). Revealing evolutions in dynamical networks. arXiv preprint arXiv:1707.02114.
Morini, M., Jensen, P., and Flandrin, P. (2015). Temporal evolution of communities based on scientometrics data. In Sciences des donnees et humanites numeriques.
Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., and Onnela, J.-P. (2010). Community structure in timedependent, multiscale, and multiplex networks. science, 328(5980):876{878.
Newbold, P. (1983). Arima model building and the time series analysis approach to forecasting. Journal of Forecasting (pre-1986), 2(1):23.
Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2):167{256.
Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133.
Newman, M. E. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2):026113.
Nguyen, N. P., Dinh, T. N., Tokala, S., and Thai, M. T. (2011a). Overlapping communities in dynamic networks: their detection and mobile applications. In Proceedings of the 17th annual international conference on Mobile computing and networking, pages 85{96. ACM.
Nguyen, N. P., Dinh, T. N., Xuan, Y., and Thai, M. T. (2011b). Adaptive algorithms for detecting community structure in dynamic social networks. In 30th International Conference on Computer Communications (INFOCOM), pages 2282{2290. IEEE.
Palla, G., Barabasi, A.-L., and Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136):664{667.
Palla, G., Derenyi, I., Farkas, I., and Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043):814{818.
Peel, L. and Clauset, A. (2015). Detecting change points in the large-scale structure of evolving networks. In AAAI, pages 2914{2920.
Peel, L., Larremore, D. B., and Clauset, A. (2017). The ground truth about metadata and community detection in networks. Science Advances, 3(5):e1602548.
Pons, P. and Latapy, M. (2006). Computing communities in large networks using random walks. J. Graph Algorithms Appl., 10(2):191{218.
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). De ning and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9):2658{2663.
Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., and Berger-Wolf, T. (2011). Visualizing the evolution of community structures in dynamic social networks. In Computer Graphics Forum, volume 30, pages 1061{1070. Wiley Online Library.
Renyi, A. and Erdos, P. (1959). On random graphs. Publicationes Mathematicae, 6(290-297):5.
Rossetti, G. (2015). Social Network Dynamics. PhD thesis, Computer Science Dept. University of Pisa.
Rossetti, G. (2017). Rdyn: Graph benchmark handling community dynamics. Journal of Complex Networks.
Rossetti, G., Guidotti, R., Pennacchioli, D., Pedreschi, D., and Giannotti, F. (2015). Interaction prediction in dynamic networks exploiting community discovery. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 553{558. ACM.
Rossetti, G., Pappalardo, L., Pedreschi, D., and Giannotti, F. (2017). Tiles: an online algorithm for community discovery in dynamic social networks. Machine Learning, 106(8):1213{1241.
Rossetti, G., Pappalardo, L., and Rinzivillo, S. (2016). A novel approach to evaluate community detection algorithms on ground truth. In Complex Networks VII, pages 133{144. Springer.
Rosvall, M. and Bergstrom, C. T. (2010). Mapping change in large networks. PloS one, 5(1):e8694.
Saganowski, S., Gliwa, B., Brodka, P., Zygmunt, A., Kazienko, P., and Kozlak, J. (2015). Predicting community evolution in social networks. Entropy, 17(5):3053{3096.
Sawardecker, E. N., Sales-Pardo, M., and Amaral, L. A. N. (2009). Detection of node group membership in networks with group overlap. The European Physical Journal BCondensed Matter and Complex Systems, 67(3):277{284.
Schlitter, N. and Falkowski, T. (2009). Mining the dynamics of music preferences from a social networking site. In International Conference on Advances in Social Network Analysis and Mining (ASONAM), pages 243{248. IEEE.
Shang, J., Liu, L., Xie, F., Chen, Z., Miao, J., Fang, X., and Wu, C. (2014). A real-time detecting algorithm for tracking community structure of dynamic networks. arXiv preprint arXiv:1407.2683.
Shao, J., Han, Z., and Yang, Q. (2014). Community detection via local dynamic interaction. arXiv preprint arXiv:1409.7978.
Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. Transactions on pattern analysis and machine intelligence, 22(8):888{905.
Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P. S. (2007). Graphscope: parameter-free mining of large time-evolving graphs. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 687{696. ACM.
Sun, Y., Tang, J., Han, J., Chen, C., and Gupta, M. (2014). Co-evolution of multi-typed objects in dynamic star networks. Transactions on Knowledge and Data Engineering (TKDE), 26(12):2942{2955.
Sun, Y., Tang, J., Han, J., Gupta, M., and Zhao, B. (2010). Community evolution detection in dynamic heterogeneous information networks. In Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pages 137{146. ACM.
Tabourier, L., Libert, A.-S., and Lambiotte, R. (2016). Predicting links in ego-networks using temporal information. EPJ Data Science, 5(1):1.
Taka oli, M., Sangi, F., Fagnan, J., and Zaane, O. R. (2011). Modec-modeling and detecting evolutions of communities. In 5th International Conference on Weblogs and Social Media (ICWSM), pages 30{41. AAAI.
Tan, B., Zhu, F., Qu, Q., and Liu, S. (2014). Online community transition detection. In International Conference on Web-Age Information Management, pages 633{ 644. Springer.
Tang, L., Liu, H., Zhang, J., and Nazeri, Z. (2008). Community evolution in dynamic multi-mode networks. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 677{685. ACM.
Tantipathananandh, C., Berger-Wolf, T., and Kempe, D. (2007). A framework for community identi cation in dynamic social networks. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 717{726. ACM.
Van Nguyen, M., Kirley, M., and Garc a-Flores, R. (2012). Community evolution in a scienti c collaboration network. In Congress on Evolutionary Computation (CEC), pages 1{8. IEEE.
Vehlow, C., Beck, F., Auwarter, P., and Weiskopf, D. (2015a). Visualizing the evolution of communities in dynamic graphs. In Computer Graphics Forum, volume 34, pages 277{288. Wiley Online Library.
Vehlow, C., Beck, F., and Weiskopf, D. (2015b). The state of the art in visualizing group structures in graphs. In Eurographics Conference on Visualization (EuroVis)-STARs, volume 2. The Eurographics Association.
Vehlow, C., Beck, F., and Weiskopf, D. (2016). Visualizing Dynamic Hierarchies in Graph Sequences. IEEE Transactions on Visualization and Computer Graphics, 22(10):2343{2357.
Viard, T., Latapy, M., and Magnien, C. (2016). Computing maximal cliques in link streams. Theoretical Computer Science, 609:245{252.
Wang, Y., Wu, B., and Pei, X. (2008). Commtracker: A core-based algorithm of tracking community evolution. Advanced Data Mining and Applications, pages 229{240.
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of small-worldnetworks. Nature, 393(6684):440{442.
Xie, J., Chen, M., and Szymanski, B. K. (2013a). Labelrankt: Incremental community detection in dynamic networks via label propagation. In Proceedings of the Workshop on Dynamic Networks Management and Mining, pages 25{32. ACM.
Xie, J., Kelley, S., and Szymanski, B. K. (2013b). Overlapping community detection in networks: The state-of-the-art and comparative study. ACM Computing Surveys, 45(4):43.
Xie, J. and Szymanski, B. K. (2013). Labelrank: A stabilized label propagation algorithm for community detection in networks. In 2nd Network Science Workshop (NSW), pages 138{143. IEEE.
Xu, H., Wang, Z., and Xiao, W. (2013a). Analyzing community core evolution in mobile social networks. In International Conference on Social Computing (SocialCom), pages 154{161. IEEE.
Xu, H., Xiao, W., Tang, D., Tang, J., and Wang, Z. (2013b). Community core evolution in mobile social networks. The Scienti c World Journal, 2013.
Xu, K. S. and Hero, A. O. (2014). Dynamic stochastic blockmodels for time-evolving social networks. Journal of Selected Topics in Signal Processing, 8(4):552{562.
Yang, J. and Leskovec, J. (2014). Structure and overlaps of ground-truth communities in networks. Transactions on Intelligent Systems and Technology (TIST), 5(2):26.
Yang, J. and Leskovec, J. (2015). De ning and evaluating network communities based on ground-truth. Knowledge and Information Systems, 42(1):181{213.
Yang, T., Chi, Y., Zhu, S., Gong, Y., and Jin, R. (2009). A bayesian approach toward nding communities and their evolutions in dynamic social networks. In Proceedings of the International Conference on Data Mining, pages 990{ 1001. SIAM.
Yang, T., Chi, Y., Zhu, S., Gong, Y., and Jin, R. (2011). Detecting communities and their evolutions in dynamic social networks { a bayesian approach. Machine learning, 82(2):157{189.
Zakrzewska, A. and Bader, D. A. (2015). A dynamic algorithm for local community detection in graphs. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 559{564. ACM.
Zhou, D., Councill, I., Zha, H., and Giles, C. L. (2007). Discovering temporal communities from social network documents. In 7th International Conference on Data Mining (ICDM), pages 745{750. IEEE.
In (Viard et al., 2016), the notion of clique is generalized to link streams. A -clique is a set of nodes and a time interval such that all nodes in this set are pairwise connected at least once during any sub-interval of duration of the interval. The paper presents an algorithm able to compute all maximal (in terms of nodes or time interval) -cliques in a given link stream, for a given . A solution able to reduce the computational complexity has been proposed in (Himmel et al., 2016).

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:384934,
	title = {Community discovery in dynamic networks: A survey},
	author = {Rossetti G. and Cazabet R.},
	publisher = {Association for Computing Machinery,, New York, N.Y. , Stati Uniti d'America},
	doi = {10.1145/3172867 and 10.48550/arxiv.1707.03186},
	journal = {ACM computing surveys},
	volume = {51},
	year = {2018}
}