[1] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee, “Self-organization and identification of web communities,” IEEE Computer, vol. 35, pp. 66-71, 2002.
[2] R. Guimera and L. A. N. Amaral, “Functional cartography of complex metabolic networks,” Nature, vol. 433, no. 7028, pp. 895-900, 2005.
[3] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, vol. 435, pp. 814-818, June 2005.
[4] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” PROC.NATL.ACAD.SCI.USA, vol. 99, p. 7821, 2002.
[5] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,” 2002.
[6] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3-5, pp. 75 - 174, 2010.
[7] M. E. J. Newman and E. A. Leicht, “Mixture models and exploratory analysis in networks,” Proceedings of the National Academy of Science, vol. 104, pp. 9564-9569, June 2007.
[8] L. Tang, H. Liu, J. Zhang, and Z. Nazeri, “Community evolution in dynamic multi-mode networks,” in KDD '08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 677-685, ACM, 2008.
[9] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Discovering leaders from community actions,” in CIKM '08: Proceeding of the 17th ACM conference on Information and knowledge management, (New York, NY, USA), pp. 499-508, ACM, 2008.
[10] M. Szell, R. Lambiotte, and S. Thurner, “Trade, conflict and sentiments: Multi-relational organization of large-scale social networks,” arXiv.org, 1003.5137, 2010.
[11] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and negative links in online social networks,” in WWW, pp. 641-650, ACM, 2010.
[12] M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi, “Foundations of multidimensional network analysis,” in ASONAM, IEEE, 2011 (to appear).
[13] J. Rissanen, “Modelling by the shortest data description,” Automatica, vol. 14, pp. 465-471, 1978.
[14] P. D. Grnwald, The Minimum Description Length Principle, vol. 1 of MIT Press Books. The MIT Press, 2007.
[15] J. Kleinberg, “An impossibility theorem for clustering,” in Advances in Neural Information Processing Systems (S. Becker, S. Thrun, and K. Obermayer, eds.), pp. 446-453, MIT Press, 2002.
[16] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” The Bell system technical journal, vol. 49, no. 1, pp. 291-307, 1970.
[17] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with eigenvectors of graphs,” SIAM J. Matrix Anal. Appl., vol. 11, no. 3, pp. 430-452, 1990.
[18] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large networks,” Physical Review E, vol. 70, p. 066111, 2004.
[19] R. Lambiotte, J. Delvenne, and M. Barahona, “Laplacian Dynamics and Multiscale Modular Structure in Networks,” ArXiv e-prints, Dec. 2008.
[20] J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection,” vol. 74, pp. 016110-+, July 2006.
[21] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” in KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 554-560, ACM, 2006.
[22] B. Long, X. Wu, Z. M. Zhang, and P. S. Yu, “Unsupervised learning on k-partite graphs,” in KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 317- 326, ACM, 2006.
[23] L. Tang and H. Liu, “Relational learning via latent social dimensions,” in KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 817-826, ACM, 2009.
[24] L. Tang, X. Wang, and H. Liu, “Uncovering groups via heterogeneous interaction analysis,” in ICDM, IEEE, 2009.
[25] A. Banerjee, S. Basu, and S. Merugu, “Multi-way clustering on relation graphs.,” in SDM, SIAM, 2007.
[26] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda, “Learning systems of concepts with an infinite relational model,” in AAAI'06: Proceedings of the 21st national conference on Artificial intelligence, pp. 381-388, AAAI Press, 2006.
[27] L. Friedland and D. Jensen, “Finding tribes: identifying closeknit individuals from employment patterns,” in KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 290-299, ACM, 2007.
[28] D. Chakrabarti, “Autopart: parameter-free graph partitioning and outlier detection,” in PKDD '04: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, (New York, NY, USA), pp. 112-124, Springer-Verlag New York, Inc., 2004.
[29] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, and M. Grobelnik, “Monitoring network evolution using mdl,” Data Engineering, International Conference on, vol. 0, pp. 1328-1330, 2008.
[30] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu, “Hierarchical, parameter-free community discovery,” in ECML PKDD '08: Proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases - Part II, (Berlin, Heidelberg), pp. 170-187, Springer-Verlag, 2008.
[31] Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher, “Metafac: community discovery via relational hypergraph factorization,” in KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 527-536, ACM, 2009.
[32] J. M. Hofman and C. H. Wiggins, “A bayesian approach to network modularity,” Physical Review Letters, vol. 100, p. 258701, 2008.
[33] J. Baumes, M. Goldberg, and M. Magdon-ismail, “Efficient identification of overlapping communities,” in In IEEE International Conference on Intelligence and Security Informatics (ISI, pp. 27-36, 2005.
[34] S. E. Schaeffer, “Stochastic local clustering for massive graphs,” in Proceedings of the Ninth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-05), vol. 3518 of Lecture Notes in Computer Science, pp. 354-360, Springer-Verlag GmbH, 2005.
[35] S. Gregory, “A fast algorithm to find overlapping communities in networks,” in ECML PKDD '08: Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases - Part I, (Berlin, Heidelberg), pp. 408- 423, Springer-Verlag, 2008.
[36] J. Bagrow and E. Bollt, “A local method for detecting communities,” Physical Review E, vol. 72, p. 046108, 2005.
[37] A. Lancichinetti, S. Fortunato, and J. Kertesz, “Detecting the overlapping and hierarchical community structure of complex networks,” New Journal of Physics, vol. 11, p. 033015, 2009.
[38] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community structures in large-scale networks,” Physical Review E, vol. 76, p. 036106, 2007.
[39] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A framework for community identification in dynamic social networks,” in KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 717-726, ACM, 2007.
[40] F. Wu and B. A. Huberman, “Finding communities in linear time: a physics approach,” The European Physical Journal B - Condensed Matter and Complex Systems, vol. 38, no. 2, pp. 331-338, 2004.
[41] M. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, and W. A. Wallace, “Communication dynamics of blog networks,” in The 2nd SNA-KDD Workshop '08 (SNA-KDD'08), August 2008.
[42] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in social networks,” in KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 199- 208, ACM, 2009.
[43] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership stochastic blockmodels,” JOURNAL OF MACHINE LEARNING RESEARCH, vol. 9, p. 1981, 2007.
[44] P. Pons and M. Latapy, “Computing communities in large networks using random walks,” Journal of Graph Algorithms and Applications, 2006.
[45] F. Wei, W. Qian, C. Wang, and A. Zhou, “Detecting overlapping community structures in networks,” World Wide Web, vol. 12, no. 2, pp. 235-261, 2009.
[46] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal community structure,” Proceedings of the National Academy of Science, vol. 105, pp. 1118-1123, Jan. 2008.
[47] C. Komusiewicz, F. Hu¨ffner, H. Moser, and R. Niedermeier, “Isolation concepts for efficiently enumerating dense subgraphs,” Theor. Comput. Sci., vol. 410, no. 38-40, pp. 3640- 3654, 2009.
[48] S. Lehmann, M. Schwartz, and L. K. Hansen, “Bi-clique communities,” PHYS.REV., vol. 78, p. 016108, 2008.
[49] H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping and hierarchical community structure in networks,” PHYSICA A, vol. 388, p. 1706, 2009.
[50] T. S. Evans and R. Lambiotte, “Line graphs, link partitions and overlapping communities,” Physical Review E, vol. 80, p. 016105, 2009.
[51] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal multi-scale complexity in networks,” Nature, 2010.
[52] B. Ball, B. Karrer, and M. E. J. Newman, “An efficient and principled method for detecting communities in networks,” ArXiv e-prints, Apr. 2011.
[53] T. Eliassi-Rad, K. Henderson, S. Papadimitriou, and C. Faloutsos, “A hybrid community discovery framework for complex networks,” in SIAM Conference on Data Mining, 2010.
[54] D. Cai, Z. Shao, X. He, X. Yan, and J. Han, “Community mining from multi-relational networks,” in Proceedings of the 2005 European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'05), (Porto, Portugal), 2005.
[55] A. Clauset, C. Moore, and M. E. Newman, “Hierarchical structure and the prediction of missing links in networks.,” Nature, vol. 453, no. 7191, pp. 98-101, 2008.
[56] L. Kaufman and P. J. Rousseeuw, “Finding groups in data: An introduction to cluster analysis,” John Wiley, 1990.
[57] I. S. Dhillon, S. Mallela, and D. S. Modha, “Informationtheoretic co-clustering,” in KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 89-98, ACM, 2003.
[58] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos, “Fully automatic cross-associations,” in KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 79-88, ACM, 2004.
[59] B. Long, Z. M. Zhang, X. Wu´, and P. S. Yu, “Spectral clustering for multi-type relational data,” in ICML '06: Proceedings of the 23rd international conference on Machine learning, (New York, NY, USA), pp. 585-592, ACM, 2006.
[60] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological data analysis: A survey,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45, 2004.
[61] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience, August 1991.
[62] P. Grunwald, “A tutorial introduction to the minimum description length principle,” 2004.
[63] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,” Mach. Learn., vol. 2, pp. 139-172, September 1987.
[64] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving data streams,” in VLDB '2003: Proceedings of the 29th international conference on Very large data bases, pp. 81-92, VLDB Endowment, 2003.
[65] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical clustering algorithm using locality-sensitive hashing,” Knowl. Inf. Syst., vol. 12, no. 1, pp. 25-53, 2007.
[66] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: a framework for analyzing communities and their evolutions in dynamic networks,” in WWW '08: Proceeding of the 17th international conference on World Wide Web, (New York, NY, USA), pp. 685-694, ACM, 2008.
[67] M.-S. Kim and J. Han, “A particle-and-density based evolutionary clustering method for dynamic networks,” Proc. VLDB Endow., vol. 2, no. 1, pp. 622-633, 2009.
[68] B. Gao, T.-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma, “Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering,” in KDD '05: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, (New York, NY, USA), pp. 41-50, ACM, 2005.
[69] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering with bregman divergences,” in Journal of Machine Learning Research, pp. 234-245, 2004.
[70] H. Cho, I. Dhillon, Y. Guan, and S. Sra, “Minimum sum squared residue co-clustering of gene expression data,” 2004.
[71] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, “A generalized maximum entropy approach to bregman coclustering and matrix approximation,” in In KDD, pp. 509- 514, 2004.
[72] M. Mcpherson, L. S. Lovin, and J. M. Cook, “Birds of a feather: Homophily in social networks,” Annual Review of Sociology, vol. 27, no. 1, pp. 415-444, 2001.
[73] L. Tang, S. Rajan, and V. K. Narayanan, “Large scale multilabel classification via metalabeler,” in WWW '09: Proceedings of the 18th international conference on World wide web, (New York, NY, USA), pp. 211-220, ACM, 2009.
[74] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector machine learning for interdependent and structured output spaces,” 2004.
[75] L. Tang and H. Liu, “Scalable learning of collective behavior based on sparse social dimensions,” in CIKM, 2009.
[76] L. Tang and H. Liu, “Uncovering cross-dimension group structures in multi-dimensional networks,” in SDM workshop on Analysis of Dynamic Networks, 2009.
[77] G. H. Golub and C. F. V. Loan, “Matrix computations,” (Baltimore, MD, USA), 1989.
[78] J. Kettenring, “Canonical analysis of several sets of variables,” Biometrika, vol. 58, no. 3, pp. 433-451, 1971.
[79] J. Pitman, “Combinatorial stochastic processes,” 2002.
[80] S. Papadimitriou, A. Gionis, P. Tsaparas, R. A. Visnen, H. Mannila, and C. Faloutsos, “Parameter-free spatial data mining using mdl,” Data Mining, IEEE International Conference on, vol. 0, pp. 346-353, 2005.
[81] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu, T. J. Watson, and R. Ctr, “A framework for projected clustering of high dimensional data streams,” in In Proc. of VLDB, pp. 852-863, 2004.
[82] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “Graphscope: parameter-free mining of large time-evolving graphs,” in KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 687-696, ACM, 2007.
[83] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Physical Review E, vol. 69, p. 026113, 2004.
[84] B. H. Good, Y.-A. de Montjoye, and A. Clauset, “The performance of modularity maximization in practical contexts,” 2010.
[85] M. E. J. Newman, “Finding community structure in networks using the eigenvectors of matrices,” Physical Review E, vol. 74, p. 036104, 2006.
[86] M. Berlingerio, M. Coscia, and F. Giannotti, “Finding and characterizing communities in multidimensional networks,” in ASONAM, IEEE, 2011 (to appear).
[87] M. E. J. Newman, “Fast algorithm for detecting community structure in networks,” Physical Review E, vol. 69, p. 066133, 2004.
[88] E. A. Leicht and M. E. J. Newman, “Community structure in directed networks,” Physical Review Letters, vol. 100, p. 118703, 2008.
[89] M. E. J. Newman, “Modularity and community structure in networks,” PROC.NATL.ACAD.SCI.USA, vol. 103, p. 8577, 2006.
[90] V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri, “Extending the definition of modularity to directed graphs with overlapping communities,” J.STAT.MECH., p. P03024, 2009.
[91] Agarwal, G. and Kempe, D., “Modularity-maximizing graph communities via mathematical programming,” Eur. Phys. J. B, vol. 66, no. 3, pp. 409-418, 2008.
[92] J. Duch and A. Arenas, “Community detection in complex networks using extremal optimization,” Physical Review E, vol. 72, pp. 027104+, Aug 2005.
[93] P. Bak and K. Sneppen, “Punctuated equilibrium and criticality in a simple model of evolution,” Phys. Rev. Lett., vol. 71, pp. 4083-4086, Dec 1993.
[94] S. Boettcher and A. G. Percus, “Optimization with extremal dynamics,” Phys. Rev. Lett., vol. 86, pp. 5211-5214, Jun 2001.
[95] A. Arenas, J. Duch, A. Fernandez, and S. Gomez, “Size reduction of complex networks preserving modularity,” New Journal of Physics, vol. 9, p. 176, 2007.
[96] R. Guimera and L. A. Amaral, “Cartography of complex networks: modules and universal roles,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2005, February 2005.
[97] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” J.STAT.MECH., p. P10008, 2008.
[98] K. Wakita and T. Tsurumi, “Finding community structure in mega-scale social networks: [extended abstract],” in WWW '07: Proceedings of the 16th international conference on World Wide Web, (New York, NY, USA), pp. 1275-1276, ACM, 2007.
[99] P. Boldi, M. Santini, and S. Vigna, “A large time-aware web graph,” SIGIR Forum, vol. 42, no. 2, pp. 33-38, 2008.
[100] M. L. Wallace, Y. Gingras, and R. Duhon, “A new approach for detecting scientific specialties from raw cocitation networks,” J. Am. Soc. Inf. Sci. Technol., vol. 60, no. 2, pp. 240-246, 2009.
[101] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. Onnela, “Community Structure in Time-Dependent, Multiscale, and Multiplex Networks,” Science, vol. 328, pp. 876-878, Nov. 2010.
[102] S. Gomez, P. Jensen, and A. Arenas, “Analysis of community structure in networks of correlated data,” ArXiv e-prints, Dec. 2008.
[103] M. J. Barber, “Modularity and community detection in bipartite networks,” arXiv, vol. 76, pp. 066102-+, Dec. 2007.
[104] V. A. Traag and J. Bruggeman, “Community detection in networks with positive and negative links,” arXiv, vol. 80, pp. 036115-+, Sept. 2009.
[105] M. N. L. Narasimhan, “Principles of continuum mechanics,” John Wiley and Sons, New York, 1993.
[106] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Review, vol. 51, pp. 455-500, September 2009.
[107] L. D. Lathauwer and A. de Baynast, “Blind deconvolution of ds-cdma signals by means of decomposition in rank-(1, l, l) terms,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1562-1571, 2008.
[108] A. N. Langville and W. J. Stewart, “A kronecker product approximate preconditioner for sans,” 2003.
[109] J. Sun, S. Papadimitriou, and P. Yu, “Window-based tensor analysis on high-dimensional and multi-aspect streams,” pp. 1076 -1080, dec. 2006.
[110] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: dynamic tensor analysis,” in KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 374-383, ACM, 2006.
[111] B. Bader, R. Harshman, and T. Kolda, “Temporal analysis of semantic graphs using asalsan,” pp. 33 -42, oct. 2007.
[112] E. Acar, D. M. Dunlavy, and T. G. Kolda, “Link prediction on evolving data using matrix and tensor factorizations,” in LDMTA'09: Proceeding of the ICDM'09 Workshop on Large Scale Data Mining Theory and Applications, pp. 262-269, IEEE Computer Society Press, December 2009.
[113] Y. Chi, S. Zhu, Y. Gong, and Y. Zhang, “Probabilistic polyadic factorization and its application to personalized recommendation,” in CIKM '08: Proceeding of the 17th ACM conference on Information and knowledge management, (New York, NY, USA), pp. 941-950, ACM, 2008.
[114] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect data mining,” in ICDM '08: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, (Washington, DC, USA), pp. 363-372, IEEE Computer Society, 2008.
[115] M. B. Hastings, “Community detection as an inference problem,” Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), vol. 74, no. 3, p. 035102, 2006.
[116] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational methods for graphical models,” pp. 105-161, 1999.
[117] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: Some first steps,” Social Networks, vol. 5, pp. 109-137, 1983.
[118] Y. J. Wang and G. Y. Wong, “Stochastic blockmodels for directed graphs,” Journal of American Statistical Associ- ation, vol. 82, pp. 8-19, 1987.
[119] J. Baumes, M. K. Goldberg, M. Magdon-Ismail, and W. A. Wallace, “Discovering hidden groups in communication networks,” in ISI, pp. 378-389, 2004.
[120] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-Ismail, and N. Preston, “Finding communities by clustering a graph into overlapping subgraphs,” in IADIS AC, pp. 97-104, 2005.
[121] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web,” 1998.
[122] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, Number 4598, vol. 220, 4598, pp. 671-680, 1983.
[123] R. A. Hanneman and M. Riddle, “Introduction to social network methods,” 2005.
[124] G. T. Heineman, G. Pollice, and S. Selkow, “Algorithms in a nutshell (chapter 6),” in O'Reilly Media, 2008.
[125] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40, pp. 35-41, March 1977.
[126] D. R. White, F. Harary, M. Sobel, and M. Becker, “The cohesiveness of blocks in social networks: Node connectivity and conditional density,” 2001.
[127] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and identifying communities in networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 2658-2663, March 2004.
[128] I. Vragovi´c and E. Louis, “Network community structure and loop coefficient method,” Phys. Rev. E, vol. 74, p. 016105, Jul 2006.
[129] S. Gregory, “An algorithm to find overlapping community structure in networks,” in Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2007), pp. 91-102, Springer-Verlag, September 2007.
[130] S. Gregory, “Finding overlapping communities using disjoint community detection algorithms,” in Complex Networks: CompleNet 2009, pp. 47-61, Springer-Verlag, May 2009.
[131] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, p. 167, 2003.
[132] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of viral marketing,” ACM Trans. Web, vol. 1, no. 1, p. 5, 2007.
[133] S. Fortunato, V. Latora, and M. Marchiori, “A method to find community structures based on information centrality,” 2004.
[134] E. Ziv, M. Middendorf, and C. H. Wiggins, “Informationtheoretic approach to network modularity,” Phys. Rev. E, vol. 71, p. 046117, Apr 2005.
[135] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in large social networks: membership, growth, and evolution,” in KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 44-54, ACM, 2006.
[136] S. Gregory, “Finding overlapping communities in networks by label propagation,” 2009.
[137] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of dynamic social networks,” in KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 523- 528, ACM, 2006.
[138] C. Tantipathananandh and T. Berger-Wolf, “Constant-factor approximation algorithms for identifying dynamic communities,” in KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 827-836, ACM, 2009.
[139] N. A. Alves, “Unveiling community structures in weighted networks,” Physical Review E, vol. 76, p. 036101, 2007.
[140] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, p. 509, 1999.
[141] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution of the social network of scientific collaborations,” PHYSICA A, vol. 311, p. 3, 2002.
[142] G. Kossinets and D. J. Watts, “Empirical analysis of an evolving social network,” Science, vol. 311, no. 5757, pp. 88-90, 2006.
[143] N. Agarwal, H. Liu, L. Tang, and P. S. Yu, “Identifying the influential bloggers in a community,” in WSDM '08: Proceedings of the international conference on Web search and web data mining, (New York, NY, USA), pp. 207-218, ACM, 2008.
[144] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, “Cost-effective outbreak detection in networks,” in KDD '07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 420-429, ACM, 2007.
[145] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence through a social network,” in KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 137-146, ACM, 2003.
[146] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “Examiner: Optimized level-wise frequent pattern mining with monotone constraints,” Data Mining, IEEE International Conference on, vol. 0, p. 11, 2003.
[147] A. Goyal, B.-W. On, F. Bonchi, and L. V. S. Lakshmanan, “Gurumine: A pattern mining system for discovering leaders and tribes,” Data Engineering, International Conference on, vol. 0, pp. 1471-1474, 2009.
[148] Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation,” in Advances in Neural Information Processing Systems, vol. 19, 2007.
[149] T. Minka and J. Lafferty, “Expectation-propagation for the generative aspect model,” in In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pp. 352-359, Morgan Kaufmann, 2002.
[150] E. A. Erosheva and S. E. Fienberg, “Bayesian mixed membership models for soft clustering and classification,” in Classification - The ubiquitous challenge, Springer Berlin Heidelberg, 2005.
[151] M. Mørup and L. K. Hansen, “Learning latent structure in complex networks,” Workshop on Analyzing Networks and Learning with Graphs, 2009.
[152] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova´, “Phase transition in the detection of modules in sparse networks,” ArXiv e-prints, Feb. 2011.
[153] D. J. Watts and S. H. Strogatz, “Collective dynamics of 'smallworld' networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998.
[154] S. M. van Dongen, Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, The Netherlands, 2000.
[155] F. Fouss, A. Pirotte, J. michel Renders, and M. Saerens, “A novel way of computing dissimilarities between nodes of a graph, with application to collaborative filtering,” 2004.
[156] H. Zhou and R. Lipowsky, “Network brownian motion: A new method to measure vertex-vertex proximity and to identify communities and subcommunities,” in International Conference on Computational Science, pp. 1062-1069, 2004.
[157] F. Wei, C. Wang, L. Ma, and A. Zhou, “Detecting overlapping community structures in networks with global partition and local expansion,” Progress in WWW Research and Development, 2008.
[158] A. Lancichinetti and S. Fortunato, “Community detection algorithms: A comparative analysis,” Physical Review E, vol. 80, pp. 056117-+, Nov. 2009.
[159] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis, “Mining graph evolution rules,” in ECML/PKDD (1), pp. 115-130, 2009.
[160] S. Nijssen and J. N. Kok, “A quickstart in frequent structure mining can make a difference,” in KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, (New York, NY, USA), pp. 647- 652, ACM, 2004.
[161] M. Kuramochi and G. Karypis, “Finding frequent patterns in a large sparse graph*,” Data Min. Knowl. Discov., vol. 11, no. 3, pp. 243-271, 2005.
[162] K. Saito and T. Yamada, “Extracting communities from complex networks by the k-dense method,” in ICDMW '06: Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops, (Washington, DC, USA), pp. 300-304, IEEE Computer Society, 2006.
[163] H. Ito, K. Iwama, and T. Osumi, “Linear-time enumeration of isolated cliques,” in ESA, pp. 119-130, 2005.
[164] H. Ito and K. Iwama, “Enumeration of isolated cliques and pseudo-cliques,” in ACM Transactions on Algorithms, 2008.
[165] B. Balasundaram, S. Butenko, I. Hicks, and S. Sachdeva, “Clique relaxations in social network analysis: The maximum k-plex problem,” in Operations Research, 2009.
[166] N. Nishimura, P. Ragde, and D. M. Thilikos, “Fast fixedparameter tractable algorithms for nontrivial generalizations of vertex cover,” Discrete Appl. Math., vol. 152, no. 1-3, pp. 229- 245, 2005.
[167] T. Uno, M. Kiyomi, and H. Arimura, “Lcm ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining,” in OSDM '05: Proceedings of the 1st international workshop on open source data mining, (New York, NY, USA), pp. 77-86, ACM, 2005.
[168] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575- 577, 1973.
[169] S. Fortunato and M. Barthelemy, “Resolution limit in community detection,” Proceedings of the National Academy of Science, vol. 104, pp. 36-41, Jan. 2007.
[170] K. Henderson and T. Eliassi-Rad, “Applying latent dirichlet allocation to group discovery in large graphs,” in SAC '09: Proceedings of the 2009 ACM symposium on Applied Computing, (New York, NY, USA), pp. 1456-1461, ACM, 2009.
[171] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.
[172] T. Griffiths, “Gibbs sampling in the generative model of latent dirichlet allocation,” tech. rep., Stanford University, 2002.
[173] A. Bjorck, “Numerical methods for least squares problems,” (Philadelphia), SIAM, 1996.
[174] T. Hastie, R. Tibshirani, and J. H. Friedman, “The elements of statistical learning,” Springer, 2003.
[175] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of algorithms for network community detection,” in Proceedings of the 19th international conference on World wide web, WWW '10, (New York, NY, USA), pp. 631-640, ACM, 2010.
[176] M. Newman, “Detecting community structure in networks,” Eur. Phys. J. B, vol. 38, pp. 321-330, mar 2004.
[177] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and algorithms,” ACM Comput. Surv., vol. 38, no. 1, p. 2, 2006.
[178] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas, “Comparing community structure identification,” 2005.
[179] S. Fortunato and C. Castellano, “Community structure in graphs,” 2007.
[180] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in networks,” NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, vol. 56, p. 1082, 2009.
[181] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1, pp. 27 - 64, 2007.
[182] J. P. Scott, Social Network Analysis: A Handbook. SAGE Publications, 2000.
[183] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community detection algorithms,” Physical Review E, vol. 78, p. 046110, 2008.