2015
Conference article  Open Access

Real Time Detection and Tracking of Spatial Event Clusters

Andrienko N, Andrienko G, Fuchs G, Rinzivillo S, Betz Hd

Event detection  QA75  Clustering 

We demonstrate a system of tools for real-time detection of significant clusters of spatial events and observing their evolution. The tools include an incremental stream clustering algorithm, interactive techniques for controlling its operation, a dynamic map display showing the current situation, and displays for investigating the cluster evolution (time line and space-time cube).


1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams, in: Proc. 29th Int. Conf. Very Large Data Bases, Berlin, Germany, 2003.
2. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise, in: Proc. 6th SIAM Int. Conf. Data Mining, SIAM, Bethesda, Maryland, USA, 2006.
3. Andrienko, N., Andrienko, G.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Visualization and Computer Graphics, 17(2): 205-219, 2011.
4. Bouguelia M.-R., Belaïd Y., Belaïd, A.: An Adaptive Incremental Clustering Method Based on the Growing Neural Gas Algorithm, in: Proc. 2nd Int. Conf. Pattern Recognition Applications and Methods - ICPRAM 2013, 42-49, 2013.

Metrics



Back to previous page
BibTeX entry
@inproceedings{oai:it.cnr:prodotti:346091,
	title = {Real Time Detection and Tracking of Spatial Event Clusters},
	author = {Andrienko N and Andrienko G and Fuchs G and Rinzivillo S and Betz Hd},
	doi = {10.1007/978-3-319-23461-8_38},
	year = {2015}
}

CIMPLEX
Bringing CItizens, Models and Data together in Participatory, Interactive SociaL EXploratories


OpenAIRE