2012
Conference article  Restricted

Self-sustaining learning for robotic ecologies.

Bacciu D, Broxvall M, Coleman S, Dragone M, Gallicchio C, Gennaro C, Guzman R, Lopez R, Lozanopeiteado H, Ray A, Renteria A, Saffiotti A, Vairo C

Learning; Robotic ecology; Wireless sensor network 

The most common use of wireless sensor networks (WSNs) is to collect environmental data from a specific area, and to channel it to a central processing node for on-line or off-line analysis. The WSN technology, however, can be used for much more ambitious goals. We claim that merging the concepts and technology of WSN with the concepts and technology of distributed robotics and multi-agent systems can open new ways to design systems able to provide intelligent services in our homes and working places. We also claim that endowing these systems with learning capabilities can greatly increase their viability and acceptability, by simplifying design, customization and adaptation to changing user needs. To support these claims, we illustrate our architecture for an adaptive robotic ecology, named RUBICON, consisting of a network of sensors, effectors and mobile robots.

Publisher: SciTePress



Back to previous page
BibTeX entry
@inproceedings{oai:it.cnr:prodotti:220981,
	title = {Self-sustaining learning for robotic ecologies.},
	author = {Bacciu D and Broxvall M and Coleman S and Dragone M and Gallicchio C and Gennaro C and Guzman R and Lopez R and Lozanopeiteado H and Ray A and Renteria A and Saffiotti A and Vairo C},
	publisher = {SciTePress},
	year = {2012}
}