2022
Dataset  Metadata Only Access

Recommender systems for science: a basic taxonomy

Arezoumandan M, Ghannadrad A, Candela L, Castelli D

Recommender system  Survey and overview  Systematic literature review  Science artefact 

This dataset is accompanying the "Recommender system for science: A basic taxonomy" paper published at IRCDL 2022 conference. This study had a Systematic Mapping Approach on the Recommender system for science. In particular, the study aims at responding to four questions on recommender systems in science cases: users and their interests representation, item typologies and their representation, recommendation algorithms, and evaluation, and then providing a taxonomy. This dataset contains 209 papers of interest that have been published between 2015 and 2022. The dataset has 11 columns which organised as follows: Column Title: This column contains the title of the papers. Column DOI: This column contains the DOI of the papers. Column Publication_year: This column contains the year that the paper is published. Column DB: This column contains the repository that the paper is retrieved. Column Keywords: This column contains the keywords provided for the paper. Column Content_type: This column contains the paper type which can be: Article, Conference or Review. Column Citing_paper_count: This column contains the citation number of the paper. Column Recommended_artefact: This column contains the scientific product that is recommended to users which can be paper, workflow, collaborator, dataset or others. Column User_type: This column contains the type of user who receives the recommendation, which can be an Individual user or a Group of users. Column Algorithm: This column contains the recommendation algorithm that the paper proposed, which can be: HB (Hybrid-based), CB (Content-based), CFB (Collaborative-filtering-based), or GB (Graph-based). Column Evaluation_method: This column contains the method of the algorithm evaluation which can be OFFLINE, ONLINE, BOTH, or NO_EVALUATION.


Metrics



Back to previous page
BibTeX entry
@misc{oai:it.cnr:prodotti:464534,
	title = {Recommender systems for science: a basic taxonomy},
	author = {Arezoumandan M and Ghannadrad A and Candela L and Castelli D},
	doi = {10.5281/zenodo.6006905},
	year = {2022}
}

Blue Cloud
Blue-Cloud: Piloting innovative services for Marine Research & the Blue Economy

EOSC-Pillar
Coordination and Harmonisation of National Inititiatives, Infrastructures and Data services in Central and Western Europe

SoBigData-PlusPlus
SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics


OpenAIRE