Ajelli M, Gonçalves B, Balcan D, Colizza V, Hu H, Ramasco JJ, Merler S (2010) Comparing largescale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect Dis 10(1):190. https://doi.org/10.1186/1471-2334-10-190. ISSN 1471-2334
Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A (2009) Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci 106(51):21484-21489. https:// doi.org/10.1073/pnas.0906910106
Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nature 435(7039):207-211. https://doi.org/10.1038/nature03459
1. Balcan, D., Colizza, V., Goncalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences 106(51), 21,484{21,489 (2009). DOI 10.1073/pnas.0906910106
2. Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207{211 (2005). DOI 10.1038/nature03459
3. Barbosa, H., de Lima-Neto, F.B., Evsuko , A., Menezes, R.: The e ect of recency to human mobility. EPJ Data Science 4(1), 1{14 (2015). DOI 10.1140/epjds/ s13688-015-0059-8. URL http://dx.doi.org/10.1140/epjds/s13688-015-0059-8
4. Bellemans, T., Kochan, B., Janssens, D., Wets, G., Arentze, T., Timmermans, H.: Implementation framework and development trajectory of feathers activity-based simulation platform. Transportation Research Record: Journal of the Transportation Research Board (2175), 111{119 (2010)
5. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462{465 (2006). URL http://dx.doi.org/10.1038/nature04292
6. Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban monitoring using cell phones: A case study in rome. IEEE Transactions on Intelligent Transportation Systems 12(1), 141{151 (2011). DOI 10.1109/TITS.2010.2074196
7. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in locationbased social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11, pp. 1082{1090. ACM (2011)
8. Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.J., Vespignani, A.: Modeling the worldwide spread of pandemic in uenza: Baseline case and containment interventions. PLoS Med 4(1), 1{16 (2007). DOI 10.1371/journal.pmed.0040013
9. Conti, M., Giordano, S., May, M., Passarella, A.: From opportunistic networks to opportunistic computing. Comm. Mag. 48(9), 126{139 (2010). DOI 10.1109/MCOM.2010. 5560597. URL http://dx.doi.org/10.1109/MCOM.2010.5560597
10. De Nadai, M., Staiano, J., Larcher, R., Sebe, N., Quercia, D., Lepri, B.: The death and life of great italian cities: A mobile phone data perspective. In: Proceedings of the 25th International Conference on World Wide Web, WWW '16, pp. 413{423. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2016). DOI 10.1145/2872427.2883084. URL http://dx.doi.org/10.1145/ 2872427.2883084
11. Eagle, N., Pentland, A.S.: Eigenbehaviors: identifying structure in routine. Behavioral Ecology and Sociobiology 63(7), 1057{1066 (2009). DOI 10.1007/s00265-009-0830-6
12. Ekman, F., Keranen, A., Karvo, J., Ott, J.: Working day movement model. In: Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility Models, MobilityModels '08, pp. 33{40. ACM, New York, NY, USA (2008). DOI 10.1145/1374688.1374695. URL http://doi.acm.org/10.1145/1374688.1374695
13. Erlander, S., Stewart, N.F.: The Gravity model in transportation analysis : theory and extensions. Topics in transportation. VSP, Utrecht, The Netherlands (1990). URL http://opac.inria.fr/record=b1117869
14. Ghosh, J., Philip, S.J., Qiao, C.: Sociological orbit aware location approximation and routing in manet. In: 2nd International Conference on Broadband Networks, 2005., pp. 641{650 Vol. 1 (2005). DOI 10.1109/ICBN.2005.1589669
15. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779{782 (2008). DOI 10.1038/nature06958
16. Hasan, S., Schneider, C., Ukkusuri, S., Gonzalez, M.: Spatiotemporal Patterns of Urban Human Mobility. Journal of Statistical Physics 151(1-2), 304{318 (2013). DOI 10.1007/ s10955-012-0645-0. URL http://dx.doi.org/10.1007/s10955-012-0645-0
17. Hess, A., Hummel, K.A., Gansterer, W.N., Haring, G.: Data-driven human mobility modeling: A survey and engineering guidance for mobile networking. ACM Comput. Surv. 48(3), 38:1{38:39 (2015). DOI 10.1145/2840722. URL http://doi.acm.org/10. 1145/2840722
18. Hidalgo, C.A., Rodriguez-Sickert, C.: The dynamics of a mobile phone network. Physica A: Statistical Mechanics and its Applications 387(12), 3017{3024 (2008). DOI http://dx.doi.org/10.1016/j.physa.2008.01.073. URL http://www.sciencedirect.com/ science/article/pii/S0378437108000976
19. Iovan, C., Olteanu-Raimond, A.M., Couronne, T., Smoreda, Z.: Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In: Springer (ed.) 16th International Conference on Geographic Information Science (AGILE'13), pp. 247{265 (2013). DOI 10.1007/978-3-319-00615-4 14. URL http://dx.doi.org/10.1007/978-3-319-00615-4_14
20. Janssens, D.: Data Science and Simulation in Transportation Research, 1st edn. IGI Global, Hershey, PA, USA (2013)
21. Jiang, S., Jr, J.F., Gonzalez, M.: Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery 25(3), 478{510 (2012). DOI 10.1007/ s10618-012-0264-z
22. Jung, W.S., Wang, F., Stanley, H.E.: Gravity model in the korean highway. EPL (Europhysics Letters) 81(4), 48,005 (2008). URL http://stacks.iop.org/0295-5075/81/ i=4/a=48005
23. Karamshuk, D., Boldrini, C., Conti, M., Passarella, A.: Human mobility models for opportunistic networks. IEEE Communications Magazine 49(12), 157{165 (2011). DOI 10.1109/MCOM.2011.6094021. URL http://ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=6042290&tag=1
24. Kopp, C., Kochan, B., May, M., Pappalardo, L., Rinzivillo, S., Schulz, D., Simini, F.: Evaluation of spatio{temporal microsimulation systems. In: L.K. D. Janssens A. Yasar (ed.) Data on Science and Simulation in Transportation Research. IGI Global (2014)
25. Kosta, S., Mei, A., Stefa, J.: Small world in motion (SWIM): Modeling communities in ad-hoc mobile networking. In: 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 1{9. IEEE (2010). DOI 10.1109/secon.2010.5508278. URL http://dx.doi.org/10.1109/ secon.2010.5508278
26. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: A new mobility model for human walks. In: INFOCOM 2009, IEEE, pp. 855{863 (2009). DOI 10.1109/INFCOM.2009. 5061995
27. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: Self-similar least-action human walk. IEEE/ACM Trans. Netw. 20(2), 515{529 (2012). DOI 10.1109/TNET.2011. 2172984. URL http://dx.doi.org/10.1109/TNET.2011.2172984
28. Lenormand, M., Bassolas, A., Ramasco, J.J.: Systematic comparison of trip distribution laws and models. Journal of Transport Geography 51, 158 { 169 (2016). DOI 10. 1016/j.jtrangeo.2015.12.008. URL http://www.sciencedirect.com/science/article/ pii/S0966692315002422
29. Lenormand, M., Goncalves, B., Tugores, A., Ramasco, J.J.: Human di usion and city in uence. Journal of The Royal Society Interface 12(109) (2015). DOI 10.1098/rsif. 2015.0473
30. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311{331 (2007). DOI 10.1016/j.artint.2007.01.006
31. Marchetti, S., Giusti, C., Pratesi, M., Salvati, N., Giannotti, F., Pedreschi, D., Rinzivillo, S., Pappalardo, L., Gabrielli, L.: Small area model-based estimators using big data sources. Journal of O cial Statistics 31(2), 263{281 (2015). DOI 10.1515/jos-2015-0017
32. McInerney, J., Stein, S., Rogers, A., Jennings, N.R.: Breaking the habit: Measuring and predicting departures from routine in individual human mobility. Pervasive and Mobile Computing 9(6), 808{822 (2013)
33. Meloni, S., Perra, N., Arenas, A., Gomez, S., Moreno, Y., Vespignani, A.: Modeling human mobility responses to the large-scale spreading of infectious diseases. Scienti c Reports 1(62) (2011). DOI 10.1038/srep00062. URL http://dx.doi.org/10.1038/ srep00062
34. Munjal, A., Camp, T., Navidi, W.C.: Smooth: A simple way to model human mobility. In: Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM '11, pp. 351{360. ACM, New York, NY, USA (2011). DOI 10.1145/2068897.2068957. URL http://doi.acm.org/10.1145/ 2068897.2068957
35. Pappalardo, L., Rinzivillo, S., Pedreschi, D., Giannotti, F.: Validating general human mobility patterns on gps data. In: Proceedings of the 21th Italian Symposium on Advanced Database Systems, (SEBD2013) (2013)
36. Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D., Giannotti, F.: Understanding the patterns of car travel. The European Physical Journal Special Topics 215(1), 61{73 (2013). DOI 10.1140/epjstn%252fe2013-01715-5. URL http://dx.doi.org/10.1140/ epjst%252fe2013-01715-5
37. Pappalardo, L., Rinzivillo, S., Simini, F.: Human mobility modelling: Exploration and preferential return meet the gravity model. Procedia Computer Science 83, 934 { 939 (2016). DOI http://dx.doi.org/10.1016/j.procs.2016.04.188. URL http: //www.sciencedirect.com/science/article/pii/S1877050916302216. The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016) / The 6th International Conference on Sustainable Energy Information Technology (SEIT2016) / A liated Workshops
38. Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F.: Comparing general mobility and mobility by car. In: Proceedings of the 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, BRICS-CCI-CBIC '13, pp. 665{668. IEEE Computer Society, Washington, DC, USA (2013). DOI 10.1109/BRICS-CCI-CBIC.2013.116. URL http://dx.doi.org/10.1109/ BRICS-CCI-CBIC.2013.116
39. Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., Barabasi, A.L.: Returners and explorers dichotomy in human mobility. Nat Commun 6 (2015). DOI 10.1038/ncomms9166. URL http://dx.doi.org/10.1038/ncomms9166
40. Pappalardo, L., Vanhoof, M., Gabrielli, L., Smoreda, Z., Pedreschi, D., Giannotti, F.: An analytical framework to nowcast well-being using mobile phone data. International Journal of Data Science and Analytics pp. 1{18 (2016). DOI 10.1007/s41060-016-0013-2. URL http://dx.doi.org/10.1007/s41060-016-0013-2
41. Ranjan, G., Zang, H., Zhang, Z.L., Bolot, J.: Are call detail records biased for sampling human mobility? SIGMOBILE Mob. Comput. Commun. Rev. 16(3), 33{44 (2012). DOI 10.1145/2412096.2412101. URL http://doi.acm.org/10.1145/2412096.2412101
42. Reades, J., Calabrese, F., Sevtsuk, A., Ratti, C.: Cellular census: Explorations in urban data collection. IEEE Pervasive Computing 6(3), 30{38 (2007). DOI 10.1109/MPRV. 2007.53
43. Rinzivillo, S., Gabrielli, L., Nanni, M., Pappalardo, L., Pedreschi, D., Giannotti, F.: The purpose of motion: Learning activities from individual mobility networks. In: Proceedings of the 2014 International Conference on Data Science and Advanced Analytics, DSAA'14, pp. 312{318 (2014). DOI 10.1109/DSAA.2014.7058090
44. Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the geographical borders of human mobility. Kunstliche Intelligenz 26(3), 253{260 (2012). DOI 10.1007/s13218-012-0181-8
45. Schneider, C.M., Belik, V., Couronne, T., Smoreda, Z., Gonzalez, M.C.: Unravelling daily human mobility motifs. Journal of The Royal Society Interface 10(84) (2013). DOI 10.1098/rsif.2013.0246. URL http://rsif.royalsocietypublishing.org/content/10/ 84/20130246
46. Schwamborn, M., Aschenbruck, N.: Introducing geographic restrictions to the slaw human mobility model. In: 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 264{272 (2013). DOI 10.1109/MASCOTS.2013.34
47. Simini, F., Gonzalez, M.C., Maritan, A., Barabasi, A.L.: A universal model for mobility and migration patterns. Nature 484, 96{100 (2012). DOI 10.1038/nature10856
48. Solmaz, G., Akbas, M.I., Turgut, D.: Modeling visitor movement in theme parks. In: Local Computer Networks (LCN), 2012 IEEE 37th Conference on, pp. 36{43 (2012). DOI 10.1109/LCN.2012.6423650
49. Solmaz, G., Akbas, M.I., Turgut, D.: A mobility model of theme park visitors. IEEE Transactions on Mobile Computing 14(12), 2406{2418 (2015). DOI 10.1109/TMC.2015. 2400454
50. Song, C., Koren, T., Wang, P., Barabasi, A.L.: Modelling the scaling properties of human mobility. Nature Physics 6(10), 818{823 (2010). DOI 10.1038/nphys1760. URL http://dx.doi.org/10.1038/nphys1760
51. Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018{1021 (2010). DOI 10.1126/science.1177170
52. Spinsanti, L., Berlingerio, M., Pappalardo, L.: Mobility and geo-social networks. In: Mobility Data: Modeling, Management, and Understanding, pp. 315{333. Cambridge press (2013)
53. Thiemann, C., Theis, F., Grady, D., Brune, R., Brockmann, D.: The structure of borders in a small world. PloS one 5(11), e15,422 (2010)
54. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pp. 1100{1108. ACM, New York, NY, USA (2011). DOI 10.1145/2020408.2020581
55. Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., Gonzalez, M.C.: Understanding road usage patterns in urban areas. Scienti c Reports 2(1001) (2012). DOI 10.1038/ srep01001
56. Wilson, A.G.: The use of entropy maximising models, in the theory of trip distribution, mode split and route split. Journal of Transport Economics and Policy pp. 108{126 (1969). DOI 10.2307/20052128
57. Zheng, Q., Hong, X., Liu, J., Cordes, D., Huang, W.: Agenda driven mobility modelling. IJAHUC 5(1), 22{36 (2010). DOI http://dx.doi.org/10.1504/IJAHUC.2010.03
58. Zipf, G.K.: The p1p2/d hypothesis: On the intercity movement of persons. American Sociological Review 11(6), 677{686 (1946)
Ajelli, M, Gonçalves, B, Balcan, D, Colizza, V, Hu, H, Ramasco, JJ, Merler, S. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect Dis. 2010; 10 (1): 190
Balcan, D, Colizza, V, Gonçalves, B, Hu, H, Ramasco, JJ, Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci. 2009; 106 (51): 21484-21489
Barabási, A-L. The origin of bursts and heavy tails in human dynamics. Nature. 2005; 435 (7039): 207-211
Barbosa, H, de Lima-Neto, FB, Evsukoff, A, Menezes, R. The effect of recency to human mobility. EPJ Data Sci. 2015; 4 (1): 1-14
Barbosa-Filho H, Barthelemy M, Ghoshal G, James CR, Lenormand M, Louail T, Menezes R, Ramasco JJ, Simini F, Tomasini M (2017) Human mobility: models and applications. arXiv:1710.00004
Batty, M, Axhausen, KW, Giannotti, F, Pozdnoukhov, A, Bazzani, A, Wachowicz, M, Ouzounis, G, Portugali, Y. Smart cities of the future. Eur Phys J Spec Top. 2012; 214 (1): 481-518
Bellemans, T, Kochan, B, Janssens, D, Wets, G, Arentze, T, Timmermans, H. Implementation framework and development trajectory of feathers activity-based simulation platform. Transp Res Rec J Transp Res Board. 2010; 2175: 111-119
Boldrini, C, Passarella, A. Hcmm: Modelling spatial and temporal properties of human mobility driven by users’ social relationships. Comput Commun. 2010; 33 (9): 1056-1074
Borrel, V, Legendre, F, Dias de Amorim, M, Fdida, S. Simps: using sociology for personal mobility. IEEE/ACM Trans Netwrking. 2009; 17 (3): 831-842
Brockmann, D, Hufnagel, L, Geisel, T. The scaling laws of human travel. Nature. 2006; 439 (7075): 462-465
Brown, C, Nicosia, V, Scellato, S, Noulas, A, Mascolo, C. Social and place-focused communities in location-based online social networks. Eur Phys J B. 2013; 86 (6): 290
Brown C, Noulas A, Mascolo C, Blondel V (2013b) A place-focused model for social networks in cities. In: 2013 International conference on social computing (SocialCom). pp 75–80. 10.1109/SocialCom.2013.18
Calabrese, F, Colonna, M, Lovisolo, P, Parata, D, Ratti, C. Real-time urban monitoring using cell phones: a case study in rome. IEEE Trans Intell Transp Syst. 2011; 12 (1): 141-151
Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social ne tworks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’11. ACM. pp 1082–1090
Colizza, V, Barrat, A, Barthelemy, M, Valleron, A-J, Vespignani, A. Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med. 2007; 4 (1): 1-16
De Nadai M, Staiano J, Larcher R, Sebe N, Quercia D, Lepri B (2016) The death and life of great italian cities: a mobile phone data perspective. In: Proceedings of the 25th international conference on world wide web, WWW ’16, pp. 413–423, Republic and Canton of Geneva, Switzerland, 2016. International World Wide Web Conferences Steering Committee. 10.1145/2872427.2883084. ISBN 978-1-4503-4143-1
Eagle, N, Pentland, AS. Eigenbehaviors: identifying structure in routine. Behav Ecol Sociobiol. 2009; 63 (7): 1057-1066
Ekman F, Keränen A, Karvo J, Ott J (2008) Working day movement model. In: Proceedings of the 1st ACM SIGMOBILE workshop on mobility models, MobilityModels ’08, ACM, New York, NY, USA. pp 33–40. 10.1145/1374688.1374695. ISBN 978-1-60558-111-8
Erlander S, Stewart NF (1990) The gravity model in transportation analysis: theory and extensions. Topics in transportation. VSP, Utrecht, The Netherlands. http://opac.inria.fr/record=b1117869. ISBN 90-6764-089-1
Ester M, Kriegel HP, Jorg S, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining (KDD). pp 226–231
Fischer Daniel, Herrmann Klaus, Rothermel Kurt (2010) Gesomo—a general social mobility model for delay tolerant networks. In: MASS, IEEE Computer Society. pp 99–108. http://dblp.uni-trier.de/db/conf/mass/mass2010.html#FischerHR10. ISBN 978-1-4244-7488-2
Ghosh J, Philip SJ, Qiao C. (2005) Sociological orbit aware location approximation and routing in manet. In: 2nd international conference on broadband networks, 2005, vol 1. pp 641–650 10.1109/ICBN.2005.1589669
Giannotti F, Pappalardo L, Pedreschi D, Wang D (2013) A complexity science perspective on human mobility. In: Mobility data: modeling, management, and understanding. pp 297–314
González, MC, Hidalgo, CA, Barabási, A-L. Understanding individual human mobility patterns. Nature. 2008; 453 (7196): 779-782
Hasan, S, Schneider, CM, Ukkusuri, SV, González, MC. Spatiotemporal patterns of urban human mobility. J Stat Phys. 2013; 151 (1–2): 304-318
Hess, A, Hummel, KA, Gansterer, WN, Haring, G. Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Comput Surv. 2015; 48 (3): 38:1-38:39
Hidalgo, CA, Rodriguez-Sickert, C. The dynamics of a mobile phone network. Phys A Stat Mech Its Appl. 2008; 387 (12): 3017-3024
Hossmann T, Spyropoulos T, Legendre F (2011a) A complex network analysis of human mobility. In: 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS). pp. 876–881 10.1109/INFCOMW.2011.5928936
Hossmann T, Spyropoulos T, Legendre F (2011b) Putting contacts into context: mobility modeling beyond inter-contact times. In: Proceedings of the twelfth ACM international symposium on mobile ad hoc networking and computing, MobiHoc ’11, vol 11. ACM, New York, NY, USA. pp 18:1–18. 10.1145/2107502.2107526. ISBN 978-1-4503-0722-2
Hristova, D, Noulas, A, Brown, C, Musolesi, M, Mascolo, C. A multilayer approach to multiplexity and link prediction in online geo-social networks. EPJ Data Sci. 2016; 5 (1): 24
Iovan C, Olteanu-Raimond A-M, Couronné T, Smoreda Z (2013) Moving and calling: mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In: Springer (ed) 16th international conference on geographic information science (AGILE’13). pp 247–265 10.1007/978-3-319-00615-4_14
Janssens, D. Data science and simulation in transportation research. 2013
Jiang, S, Ferreira, J, González, MC. Clustering daily patterns of human activities in the city. Data Min Knowl Disc. 2012; 25 (3): 478-510
Jung WS, Wang F, Stanley HE. Gravity model in the korean highway. EPL: Europhys Lett 81(4):48005 http://stacks.iop.org/0295-5075/81/i=4/a=48005
Karamshuk, D, Boldrini, C, Conti, M, Passarella, A. Human mobility models for opportunistic networks. IEEE Commun Mag. 2011; 49 (12): 157-165
Kitchin, R. The real-time city? big data and smart urbanism. GeoJournal. 2013; 79 (1): 1-14
Kopp, C, Kochan, B, May, M, Pappalardo, L, Rinzivillo, S, Schulz, D, Simini, F, Knapen, L, Janssens, D, Yasar, A. Evaluation of spatio-temporal microsimulation systems. Data on science and simulation in transportation research. 2014
Kosta S, Mei A, Stefa J (2010) Small world in motion (SWIM): modeling communities in ad-hoc mobile networking. In 2010 7th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON). IEEE. pp 1–9. 10.1109/secon.2010.5508278. ISBN 978-1-4244-7150-8
Lee K, Hong S, Kim SJ, Rhee I, Chong S (2009) Slaw: a new mobility model for human walks. In: INFOCOM 2009. IEEE. pp 855–863 10.1109/INFCOM.2009.5061995
Lee, K, Hong, S, Kim, SJ, Rhee, I, Chong, S. Slaw: self-similar least-action human walk. IEEE/ACM Trans Netw. 2012; 20 (2): 515-529
Lenormand M, Gonçalves B, Tugores A, Ramasco JJ (2015) Human diffusion and city influence. J R Soc Interface 12(109). 10.1098/rsif.2015.0473. ISSN 1742-5689
Lenormand, M, Bassolas, A, Ramasco, JJ. Systematic comparison of trip distribution laws and models. J Transp Geogr. 2016; 51: 158-169
Liao, L, Donald J, P, Fox, D, Kautz, H. Learning and inferring transportation routines. Artif Intell. 2007; 171 (5–6): 311-331
Marchetti, S, Giusti, C, Pratesi, M, Salvati, N, Giannotti, F, Pedreschi, D, Rinzivillo, S, Pappalardo, L, Gabrielli, L. Small area model-based estimators using big data source. J Off Stat. 2015; 31 (2): 263-281
McInerney, J, Stein, S, Rogers, A, Nicholas R, J. Breaking the habit: measuring and predicting departures from routine in individual human mobility. Pervasive Mob Comput. 2013; 9 (6): 808-822
Meloni, S, Perra, N, Arenas, A, Gómez, S, Moreno, Y, Vespignani, A. Modeling human mobility responses to the large-scale spreading of infectious diseases. Sci Rep. 2011; 1 (62): 08
Merler, S, Ajelli, M, Fumanelli, L, Vespignani, A. Containing the accidental laboratory escape of potential pandemic influenza viruses. BMC Med. 2013; 11 (1): 252
Munjal A, Camp T, Navidi WC (2011) Smooth: a simple way to model human mobility. In: Proceedings of the 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems, MSWiM ’11. ACM, New York, NY, USA. pp 351–360. 10.1145/2068897.2068957. ISBN 978-1-4503-0898-4
Musolesi, M, Mascolo, C. Designing mobility models based on social network theory. SIGMOBILE Mob Comput Commun Rev. 2007; 11 (3): 59-70
Navarro, G. A guided tour to approximate string matching. ACM Comput Surv. 2001; 33 (1): 31-88
Pappalardo L, Rinzivillo S, Pedreschi D, Giannotti F (2013a) Validating general human mobility patterns on gps data. In: Proceedings of the 21th Italian symposium on advanced database systems (SEBD2013)
Pappalardo L, Rinzivillo S, Qu Z, Pedreschi D, Giannotti F (2013b) Understanding the patterns of car travel. Eur Phys J Spec Top 215(1):61–73. doi:10.1140/epjst%252fe2013-01715-5
Pappalardo L, Simini F, Rinzivillo S, Pedreschi D, Giannotti F (2013c) Comparing general mobility and mobility by car. In: Proceedings of the 2013 BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence, BRICS-CCI-CBIC ’13, IEEE Computer Society, Washington, DC, USA. pp 665–668. 10.1109/BRICS-CCI-CBIC.2013.116. ISBN 978-1-4799-3194-1
Pappalardo L, Pedreschi D, Smoreda Z, Giannotti F (2015a) Using big data to study the link between human m obility and socio-economic development. In: 2015 IEEE international conference on big data, big data 2015, Santa Clara, CA, USA, October 29–November 1, 2015, pp 871–878. 10.1109/BigData.2015.7363835
Pappalardo L, Simini F, Rinzivillo S, Pedreschi D, Giannotti F, Barabasi A-L (2015b) Returners and explorers dichotomy in human mobility. Nat Commun 6. 10.1038/ncomms9166
Pappalardo, L, Rinzivillo, S, Simini, F. Human mobility modelling: exploration and preferential return meet the gravity model. Proc Comput Sci. 2016; 83: 934-939
Pappalardo, L, Vanhoof, M, Gabrielli, L, Smoreda, Z, Pedreschi, D, Giannotti, F. An analytical framework to nowcast well-being using mobile phone data. Int J Data Sci Anal. 2016; 2 (1–2): 75-92
Ranjan, G, Zang, H, Zhang, Z-L, Bolot, J. Are call detail records biased for sampling human mobility?. SIGMOBILE Mob Comput Commun Rev. 2012; 16 (3): 33-44
Reades, J, Calabrese, F, Sevtsuk, A, Ratti, C. Cellular census: explorations in urban data collection. IEEE Pervasive Comput. 2007; 6 (3): 30-38
Rinzivillo, S, Mainardi, S, Pezzoni, F, Coscia, M, Pedreschi, D, Giannotti, F. Discovering the geographical borders of human mobility. Künstl Intell. 2012; 26 (3): 253-260
Rinzivillo S, Gabrielli L, Nanni M, Pappalardo L, Pedreschi D, Giannotti F (2014) The purpose of motion: learning activities from individual mobility networks. In: Proceedings of the 2014 international conference on data science and advanced analytics, DSAA’14. pp 312–318. 10.1109/DSAA.2014.7058090
Rousseeuw, PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20: 53-65
Schneider CM, Belik V, Couronné T, Smoreda Z, González MC (2013) Unravelling daily human mobility motifs. J R Soc Interface 10(84). 10.1098/rsif.2013.0246. ISSN 1742-5689
Schwamborn M, Aschenbruck N (2013) Introducing geographic restrictions to the slaw human mobility model. In: 2013 IEEE 21st international symposium on modelling, analysis and simulation of computer and telecommunication systems. pp 264–272. 10.1109/MASCOTS.2013.34
Simini, F, González, MC, Maritan, A, Barabási, AL. A universal model for mobility and migration patterns. Nature. 2012; 484: 96-100
Solmaz G, Akbaş Mİ, Turgut D (2012) Modeling visitor movement in theme parks. In: 2012 IEEE 37th conference on local computer networks (LCN). pp 36–43. 10.1109/LCN.2012.6423650
Solmaz, G, Akbaş, Mİ, Turgut, D. A mobility model of theme park visitors. IEEE Trans Mob Comput. 2015; 14 (12): 2406-2418
Song, C, Koren, T, Wang, P, Barabási, A-L. Modelling the scaling properties of human mobility. Nat Phys. 2010; 6 (10): 818-823
Song, C, Qu, Z, Blumm, N, Barabási, A-L. Limits of predictability in human mobility. Science. 2010; 327 (5968): 1018-1021
Spinsanti L, Berlingerio M, Pappalardo L (2013) Mobility and geo-social networks. In: Mobility data: modeling, management, and understanding. pp 315–333
Tan, P-N, Steinbach, M, Kumar, V. Introduction to data mining. 2005
Thiemann, C, Theis, F, Grady, D, Brune, R, Brockmann, D. The structure of borders in a small world. PLoS ONE. 2010; 5 (11): e15422
Tomasini, M, Mahmood, B, Zambonelli, F, Brayner, A, Menezes, R. On the effect of human mobility to the design of metropolitan mobile opportunistic networks of sensors. Pervasive Mob Comput. 2017; 38 (Part 1): 215-232
Venkatramanan S, Lewis B, Chen J, Higdon D, Vullikanti A, Marathe M (2017) Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 10.1016/j.epidem.2017.02.010. ISSN 1755–4365
Volkovich Y, Scellato S, Laniado D, Mascolo C, Kaltenbrunner A (2012) The length of bridge ties: structural and geographic properties of online social interactions. In: Proceedings of the sixth international conference on weblogs and so cial media, Dublin, Ireland, June 4–7 http://www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/view/4670
Wang D, Pedreschi D, Song C, Giannotti F, Barabási A (2011) Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11. ACM, New York, NY, USA. pp 1100–1108. 10.1145/2020408.2020581. ISBN 978-1-4503-0813-7
Wang P, Hunter T, Bayen AM, Schechtner K, González MC (2012) Understanding road usage patterns in urban areas. Sci Rep 2(1001). 10.1038/srep01001
Wilson, AG. The use of entropy maximising models, in the theory of trip distribution, mode split and route split. J Transp Econ Policy. 1969; 111 (1): 108-126
Yang, S, Yang, X, Zhang, C, Spyrou, E. Using social network theory for modeling human mobility. IEEE Netw. 2010; 24 (5): 6-13
Yang Y, Jiang S, Gupta S, Veneziano D, Athavale S, Gonzalez MC (2016) The TimeGeo modeling framework for urban mobility without travel surveys. PNAS 113(37). 10.1073/pnas.1524261113
Zheng, Q, Hong, X, Liu, J, Cordes, D, Huang, W. Agenda driven mobility modelling. IJAHUC. 2010; 5 (1): 22-36
Zipf, GK. The p1p2/d hypothesis: On the intercity movement of persons. Am Sociol Rev. 1946; 11 (6): 677-686