1. Bes: il benessere equo e sostenibile in italia. Technical report, ISTAT, 2014.
2. A world that counts: mobilizing the data revolution for sustainable development. Technical report, United Nations, 2014.
3. Indicators and a monitoring framework for the sustainable development goals. Technical report, United Nations, 2015.
4. A. Amini, K. Kung, C. Kang, S. Sobolevsky, and C. Ratti. The impact of social segregation on human mobility in developing and urbanized regions. EPJ Data Science, 3, 2014.
5. L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees of separation. In Proceedings of the 4th Annual ACM Web Science Conference, WebSci '12, pages 33{42, New York, NY, USA, 2012. ACM.
6. A.-L. Barabasi. Linked: The new science of networks. Perseus Publishing, 2002.
7. V. D. Blondel, A. Decuyper, and G. Krings. A survey of results on mobile phone datasets analysis, 2015. cite arxiv:1502.03406.
8. J. Blumenstock. Calling for better measurement: Estimating an individual's wealth and well-being. In ACM KDD (Data Mining for Social Good), 2014.
9. J. Brea, J. Burroni, M. Minnoni, and C. Sarraute. Harnessing mobile phone social network topology to infer users demographic attributes. In Proceedings of the 8th Workshop on Social Network Mining and Analysis, SNAKDD'14. ACM, 2014.
10. E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11, pages 1082{1090. ACM, 2011.
11. P. Cintia, L. Pappalardo, D. Pedreschi, F. Giannotti, and M. Malvaldi. The harsh rule of the goals: data-driven performance indicators for football teams. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA'15. EEE, 2015.
12. P. J. H. Daas, M. J. Puts, and B. Buelens. Big data and o cial statistics. In The 2013 New Techniques and Technologies for Statistics conference, 2013.
13. A. Decuyper, A. Rutherford, A. Wadhwa, J. Bauer, G. Krings, T. Gutierrez, V. D. Blondel, and M. A. Luengo-Oroz. Estimating food consumption and poverty indices with mobile phone data. CoRR, abs/1412.2595, 2014.
14. P. Deville, C. Linard, S. Martin, M. Gilbert, F. R. Stevens, A. E. Gaughan, V. D. Blondel, and A. J. Tandem. Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences (PNAS), 111(45):15888{15893, 2014.
15. N. Eagle, M. Macy, and R. Claxton. Network diversity and economic development. Science, 328(5981):1029{ 1031, May 2010.
16. N. Eagle and A. S. Pentland. Eigenbehaviors: identifying structure in routine. Behavioral Ecology and Sociobiology, 63(7):1057{1066, 2009.
17. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 { 174, 2010.
18. V. Frias-martinez, V. Soto, J. Virseda, and E. Friasmartinez. Can cell phone traces measure social development? In Third Conference on the Analysis of Mobile Phone Datasets, NetMob, 2013.
19. B. Furletti, L. Gabrielli, F. Giannotti, L. Milli, M. Nanni, D. Pedreschi, R. Vivio, and G. Garofalo. Use of mobile phone data to estimate mobility ows. measuring urban population and inter-city mobility using big data in an integrated approach. In 47th SIS Scienti c Meeting of the Italian Statistica Society, Cagliari, 06/2014 2014.
20. F. Galton. Vox populi. Nature, 75(7), 1907.
21. F. Giannotti, D. Pedreschi, A. Pentland, P. Lukowicz, D. Kossmann, J. L. Crowley, and D. Helbing. A planetary nervous system for social mining and collective awareness. EPJ Special Topics, 214:49{75, 2012.
22. M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual human mobility patterns. Nature, 453(7196):779{782, June 2008.
23. U. Groemping. Relative importance for linear regression in r: The package relaimpo. Journal of Statistical Software, 17(1):1{27, 2006.
24. T. Gutierrez, G. Krings, and V. D. Blondel. Evaluating socio-economic state of a country analyzing airtime credit and mobile phone datasets. CoRR, abs/1309.4496, 2013.
25. D. Helbing and S. Balietti. How to create an innovation accelerator. EPJ Special Topics, (195):101{136, 2011.
26. C. A. Hidalgo and C. Rodriguez-Sickert. The dynamics of a mobile phone network. Physica A: Statistical Mechanics and its Applications, 387(12):3017 { 3024, 2008.
27. S. Jiang, J. F. Jr, and M. Gonzalez. Clustering daily patterns of human activities in the city. Data Mining and Knowledge Discovery, 25:478{510, 2012.
28. D. Karamshuk, C. Boldrini, M. Conti, and A. Passarella. Human mobility models for opportunistic networks. IEEE Communications Magazine, 49(12):157{ 165, 2011.
29. M.-P. Kwan. Gender, the home-work link, and spacetime patterns of nonemployment activities. Economic Geography, 75(4):370{394, 1999.
30. J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. In WWW, pages 915{ 924. ACM, 2008.
31. L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring transportation routines. Artif. Intell., 171(5-6):311{331, Apr. 2007.
32. R. Lindeman, P. Merenda, and R. Gold. Introduction to bivariate and multivariate analysis. Scott, Foresman, 1980.
33. L. Lotero, A. Cardillo, R. Hurtado, and J. GomezGardenes. Several multiplexes in the same city: The role of socioeconomic di erences in urban mobility. Available at SSRN 2507816, 2014.
34. S. Marchetti, C. Giusti, M. Pratesi, N. Salvati, F. Giannotti, D. Pedreschi, S. Rinzivillo, L. Pappalardo, and L. Gabrielli. Small area model-based estimators using big data sources. Journal of O cial Statistics, 31(2), 2015.
35. A. Monreale, S. Rinzivillo, F. Pratesi, F. Giannotti, and D. Pedreschi. Privacy-by-design in big data analytics and social mining. EPJ Data Science, 2014.
36. M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167{256, 2003.
37. J. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, and A. L. Barabasi. Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA, 104(18):7332{7336, 2007.
38. W. Pan, G. Ghoshal, C. Krumme, M. Cebrian, and A. Pentland. Urban characteristics attributable to density-driven tie formation. Nature Communications, 4, 2013.
39. L. Pappalardo, S. Rinzivillo, Z. Qu, D. Pedreschi, and F. Giannotti. Understanding the patterns of car travel. EPJ Special Topics, 215(1):61{73, 2013.
40. L. Pappalardo, F. Simini, S. Rinzivillo, D. Pedreschi, F. Giannotti, and A.-L. Barabasi. Returners and explorers dichotomy in human mobility. Nature Communications, 6(8166), 2015.
41. L. Pappalardo, Z. Smoreda, D. Pedreschi, and F. Giannotti. Using big data to study the link between human mobility and socio-economic development. In Proceedings of the IEEE International Conference on Big Data, 2015.
42. D. Pennacchioli, M. Coscia, S. Rinzivillo, F. Giannotti, and D. Pedreschi. The retail market as a complex system. EPJ Data Science, 3(1):33, 2014.
43. D. Pennacchioli, M. Coscia, S. Rinzivillo, D. Pedreschi, and F. Giannotti. Explaining the product range e ect in purchase data. In Proceedings of the IEEE International Conference on Big Data, IEEE Big Data 2015, pages 648{656, 2013.
44. S. Phithakkitnukoon, Z. Smoreda, and P. Olivier. Sociogeography of human mobility: A study using longitudinal mobile phone data. PLoS ONE, 7(6):e39253, 06 2012.
45. C. Pornet, C. Delpierre, O. Dejardin, P. Grosclaude, L. Launay, L. Guittet, T. Lang, and G. Launoy. Construction of an adaptable european transnational ecological deprivation index: the french version. Journal of Epidemiol Community Health, 66(11):982{9, 2012.
46. S. Rinzivillo, L. Gabrielli, M. Nanni, L. Pappalardo, D. Pedreschi, and F. Giannotti. The purpose of motion: Learning activities from individual mobility networks. In Proceedings of the 2014 International Conference on Data Science and Advanced Analytics, DSAA'14, 2014.
47. S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, D. Pedreschi, and F. Giannotti. Discovering the geographical borders of human mobility. Kunstliche Intelligenz, 26(3):253{260, 2012.
48. F. Simini, M. C. Gonzalez, A. Maritan, and A.-L. Barabasi. A universal model for mobility and migration patterns. Nature, 484(7392):96{100, 2012.
49. C. Smith-Clarke, A. Mashhadi, and L. Capra. Poverty on the cheap: Estimating poverty maps using aggregated mobile communication networks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 511{520. ACM, 2014.
50. C. Song, T. Koren, P. Wang, and A.-L. Barabasi. Modelling the scaling properties of human mobility. Nature Physics, 6(10):818{823, Sept. 2010.
51. C. Song, Z. Qu, N. Blumm, and A.-L. Barabasi. Limits of predictability in human mobility. Science, 327(5968):1018{1021, 2010.
52. P. Struijs and P. J. H. Daas. Quality approaches to big data in o cial statistics. In European conference on Quality in O cial Statistics, 2014.
53. D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabasi. Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pages 1100{1108, New York, NY, USA, 2011. ACM.
54. X.-Y. Yan, C. Zhao, Y. Fan, Z. Di, and W.-X. Wang. Universal predictability of mobility patterns in cities. Journal of The Royal Society Interface, 11(100), 2014.
1. Amini, A., Kung, K., Kang, C., Sobolevsky, S., Ratti, C.: The impact of social segregation on human mobility in developing and urbanized regions. EPJ Data Sci. 3 (2014)
2. A world that counts: mobilizing the data revolution for sustainable development. Technical report, United Nations (2014)
3. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference, WebSci'12, pp. 33-42. ACM, New York, NY, USA (2012)
4. Barabasi, A.-L.: Linked: The New Science of Networks. Perseus Publishing, New York (2002)
5. Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005)
6. Bes: il benessere equo e sostenibile in italia. Technical report, ISTAT (2014)
7. Blondel, V.D., Decuyper, A., Krings, G.: A survey of results on mobile phone datasets analysis (2015). arXiv:1502.03406
8. Blumenstock, J.: Calling for better measurement: Estimating an individual's wealth and well-being. In: ACM KDD (Data Mining for Social Good) (2014)
9. Brea, J., Burroni, J., Minnoni, M., Sarraute, C.: Harnessing mobile phone social network topology to infer users demographic attributes. In: Proceedings of the 8th Workshop on Social Network Mining and Analysis, SNAKDD'14. ACM (2014)
10. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11, pp. 1082-1090. ACM (2011)
11. Cintia, P., Pappalardo, L., Pedreschi, D.: Engine matters: A first large scale data driven study on cyclists' performance. In: Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, pp. 147-153. IEEE (2013)
12. Cintia, P., Pappalardo, L., Pedreschi, D., Giannotti, F., Malvaldi, M.: The harsh rule of the goals: data-driven performance indicators for football teams. In: Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA'15. IEEE (2015)
13. Costanza, R., Kubiszewski, I., Giovannini, E., Lovins, H., McGlade, J., Pickett, K.E., Ragnarsdóttir, K.V., Roberts, D., De Vogli, R., Wilkinson, R.: Development: time to leave GDP behind. Nature 505(7483), 283-285 (2014)
14. Daas, P.J.H., Puts, M.J., Buelens, B.: Big data and official statistics. In: The 2013 New Techniques and Technologies for Statistics Conference (2013)
15. Decuyper, A., Rutherford, A., Wadhwa, A., Bauer, J., Krings, G., Gutierrez,T., Blondel, V.D., Luengo-Oroz, M.A.: Estimating food consumption and poverty indices with mobile phone data. CoRR (2014). arXiv:1412.2595
16. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., Tandem, A.J.: Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 111(45), 15888-15893 (2014)
17. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science 328(5981), 1029-1031 (2010)
18. Eagle, N., Pentland, A.S.: Eigenbehaviors: identifying structure in routine. Behav. Ecol. Sociobiol. 63(7), 1057-1066 (2009)
19. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3- 5), 75-174 (2010)
20. Frias-martinez, V., Soto, V., Virseda, J., Frias-martinez, E.: Can cell phone traces measure social development? In: Third Conference on the Analysis of Mobile Phone Datasets, NetMob (2013)
21. Furletti, B., Gabrielli, L., Giannotti, F., Milli, L., Nanni, M., Pedreschi, D., Vivio, R., Garofalo,G.: Use of mobile phone data to estimate mobility flows. measuring urban population and intercity mobility using big data in an integrated approach. In: 47th SIS Scientific Meeting of the Italian Statistica Society, Cagliari, 06/2014 (2014)
22. Galton, F.: Vox populi. Nature 75(7), 450-451 (1907)
23. Giannotti, F., Pedreschi, D., Pentland, A., Lukowicz, P., Kossmann, D., Crowley, J.L., Helbing, D.: A planetary nervous system for social mining and collective awareness. EPJ Spec. Top. 214, 49- 75 (2012)
24. González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779-782 (2008)
25. Groemping, U.: Relative importance for linear regression in r: the package relaimpo. J. Stat. Softw. 17(1), 1-27 (2006)
26. Gutierrez, T., Krings, G., Blondel, V.D.: Evaluating socioeconomic state of a country analyzing airtime credit and mobile phone datasets. CoRR (2013). arXiv:1309.4496
27. Helbing, D., Balietti, S.: How to create an innovation accelerator. EPJ Spec. Top. 195(1), 101-136 (2011)
28. Hidalgo, C.A., Rodriguez-Sickert, C.: The dynamics of a mobile phone network. Phys. A 387(12), 3017-3024 (2008)
29. Iovan, C., Olteanu-Raimond, A.-M., Couronn, T., Smoreda, Z.: Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In: Springer, editor, 16th International Conference on Geographic Information Science (AGILE'13), May (2013)
30. Indicators and a monitoring framework for the sustainable development goals. Technical report, United Nations (2015)
31. Jiang, S., Jr, J.F., González, M.: Clustering daily patterns of human activities in the city. Data Min. Knowl. Discov. 25, 478-510 (2012)
32. Karamshuk, D., Boldrini, C., Conti, M., Passarella, A.: Human mobility models for opportunistic networks. IEEE Commun. Mag. 49(12), 157-165 (2011)
33. Kwan, M.-P.: Gender, the home-work link, and space-time patterns of nonemployment activities. Econ. Geogr. 75(4), 370-394 (1999)
34. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instantmessaging network. In: WWW, pp. 915-924. ACM (2008)
35. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311-331 (2007)
36. Lindeman, R., Merenda, P., Gold, R.: Introduction to Bivariate and Multivariate Analysis. Scott Foresman, Glenview (1980)
37. Lotero, L., Cardillo, A., Hurtado, R., Gomez-Gardenes, J.: Several multiplexes in the same city: the role of socioeconomic differences in urban mobility. SSRN 2507816 (2014)
38. Marchetti, S., Giusti, C., Pratesi, M., Salvati, N., Giannotti, F., Pedreschi, D., Rinzivillo, S., Pappalardo, L., Gabrielli, L.: Small area model-based estimators using big data sources. J. Off. Stat. 31(2), 263-281 (2015)
39. Monreale, A., Rinzivillo, S., Pratesi, F., Giannotti, F., Pedreschi, D.: Privacy-by-design in big data analytics and social mining. EPJ Data Sci. 10 (2014). doi:10.1140/epjdss13688-014-0010-4
40. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167-256 (2003)
41. Onnela, J., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J., Barabasi, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104(18), 7332-7336 (2007)
42. Pan, W., Ghoshal, G., Krumme, C., Cebrian, M., Pentland, A.: Urban characteristics attributable to density-driven tie formation. Nat. Commun. 4, 1961 (2013). doi:10.1038/ncomms2961
43. Pappalardo, L., Rinzivillo, S., Pedreschi, D., Giannotti, F.: Validating general human mobility patterns on gps data. In: Proceedings of the 21th Italian Symposium on Advanced Database Systems, (SEBD2013) (2013)
44. Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D., Giannotti, F.: Understanding the patterns of car travel. EPJ Spec. Top. 215(1), 61-73 (2013)
45. Pappalardo, L., Rinzivillo, S., Simini, F.: Human mobility modelling: exploration and preferential return meet the gravity model. Procedia Comput. Sci. 83, 934-939 (2016). The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops
46. Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F.: Comparing general mobility and mobility by car. In: Proceedings of the 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, BRICS-CCI-CBIC '13, pp. 665-668. IEEE Computer Society, Washington, DC, USA, (2013)
47. Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F. Barabási,A.-L.: Returners and explorers dichotomy in human mobility. Nat. Commun. 6, (8166) (2015). doi:10.1038/ ncomms9166
48. Pappalardo, L., Smoreda, Z., Pedreschi, D., Giannotti, F.: Using big data to study the link between human mobility and socio-economic development. In: Proceedings of the IEEE International Conference on Big Data (2015)
49. Pennacchioli, D., Coscia, M., Rinzivillo, S., Giannotti, F., Pedreschi, D.: The retail market as a complex system. EPJ Data Sci. 3(1), 33 (2014)
50. Pennacchioli, D., Coscia, M., Rinzivillo, S., Pedreschi, D., Giannotti, F.: Explaining the product range effect in purchase data. In: Proceedings of the IEEE International Conference on Big Data, IEEE Big Data 2015, pp. 648-656 (2013)
51. Phithakkitnukoon, S., Smoreda, Z., Olivier, P.: Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One 7(6), e39253,06 (2012)
52. Pornet, C., Delpierre, C., Dejardin, O., Grosclaude, P., Launay, L., Guittet, L., Lang, T., Launoy, G.: Construction of an adaptable european transnational ecological deprivation index: the french version. J. Epidemiol Community Health 66(11), 982-989 (2012)
53. Ranjan, G., Zang, H., Zhang, Z.-L., Bolot, J.: Are call detail records biased for sampling human mobility? SIGMOBILE Mob. Comput. Commun. Rev. 16(3), 33-44 (2012)
54. Rinzivillo, S., Gabrielli, L., Nanni, M., Pappalardo, L., Pedreschi, D., Giannotti, F.: The purpose of motion: Learning activities from individual mobility networks. In: Proceedings of the 2014 International Conference on Data Science and Advanced Analytics, DSAA'14 (2014)
55. Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the geographical borders of human mobility. Künstliche Intell. 26(3), 253-260 (2012)
56. Simini, F., González, M.C., Maritan, A., Barabási, A.-L.: A universal model for mobility and migration patterns. Nature 484(7392), 96-100 (2012)
57. Smith-Clarke, C., Mashhadi, A., Capra, L.: Poverty on the cheap: Estimating poverty maps using aggregated mobile communication networks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 511-520. ACM (2014)
58. Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818-823 (2010)
59. Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018-1021 (2010)
60. Struijs, P., Daas, P.J.H.: Quality approaches to big data in official statistics. In: European Conference on Quality in Official Statistics (2014)
61. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabási, A.-L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pp. 1100-1108. ACM, New York, NY, USA (2011)
62. Yan, X.-Y., Zhao, C., Fan, Y., Di, Z., Wang, W.-X.: Universal predictability of mobility patterns in cities. J. R. Soc. Interface 11(100) (2014). http://dx.doi.org/10.1098/rsif.2014.0834