2019
Journal article  Open Access

Finite-energy Levy-type motion through heterogeneous ensemble of Brownian particles

Sliusarenko O. Y., Vitali S., Sposini V., Paradisi P., Chechkin A., Castellani G., Pagnini G.

heterogeneous ensemble of Brownian particles  Modeling and Simulation  Mathematical Physics  Gaussian processe  Biological transport  Anomalous diffusion  Physics - Biological Physics  biological transport  heterogeneous ensemble of Brownian particle  General Physics and Astronomy  fractional diffusion  Fractional diffusion  Statistical and Nonlinear Physics  Institut für Physik und Astronomie  Levy walk  Heterogeneous ensemble of Brownian particles  Langevin equation  Gaussian processes  Condensed Matter - Statistical Mechanics  Statistics and Probability  anomalous diffusion  Lévy walk 

Complex systems are known to display anomalous diffusion, whose signature is a space/time scaling x similar to t(delta) with delta not equal 1/2 in the probability density function (PDF). Anomalous diffusion can emerge jointly with both Gaussian, e.g. fractional Brownian motion, and power-law decaying distributions, e.g. Levy Flights or Levy Walks (LWs). Levy flights get anomalous scaling, but, being jumps of any size allowed even at short times, have infinite position variance, infinite energy and discontinuous paths. LWs, which are based on random trapping events, overcome these limitations: they resemble a Levy-type power-law distribution that is truncated in the large displacement range and have finite moments, finite energy and, even with discontinuous velocity, they are continuous. However, LWs do not take into account the role of strong heterogeneity in many complex systems, such as biological transport in the crowded cell environment. In this work we propose and discuss a model describing a heterogeneous ensemble of Brownian particles (HEBP). Velocity of each single particle obeys a standard underdamped Langevin equation for the velocity, with linear friction term and additive Gaussian noise. Each particle is characterized by its own relaxation time and velocity diffusivity. We show that, for proper distributions of relaxation time and velocity diffusivity, the HEBP resembles some LW statistical features, in particular power-law decaying PDF, long-range correlations and anomalous diffusion, at the same time keeping finite position moments and finite energy. The main differences between the HEBP model and two different LWs are investigated, finding that, even when both velocity and position PDFs are similar, they differ in four main aspects: (i) LWs are biscaling, while HEBP is monoscaling; (ii) a transition from anomalous (delta = 1/2) to normal (delta = 1/2) diffusion in the long-time regime is seen in the HEBP and not in LWs; (iii) the power-law index of the position PDF and the space/time diffusion scaling are independent in the HEBP, while they both depend on the scaling of the interevent time PDF in LWs; (iv) at variance with LWs, our HEBP model obeys a fluctuation-dissipation theorem.

Source: Journal of physics. A, Mathematical and theoretical (Print) 52 (2019). doi:10.1088/1751-8121/aafe90

Publisher: IOP Publishing,, Bristol , Regno Unito


[1] Rice S A 1985 Di usion-Limited Reactions (New York: Elsevier) ISBN 9780080868196
[2] Dorsaz N, De Michele C, Piazza F, De Los Rios P and Fo G 2010 Phys. Rev. Lett. 105(12) 120601
[3] Kaplan H, Dinar N, Lacser A and Alexander Y (eds) 1993 Transport and Di usion in Turbulent Fields: Modeling and Measurement Techniques 1st ed (Netherlands: Springer) ISBN 978-94- 010-5220-7
[4] Paradisi P, Cesari R, Mainardi F and Tampieri F 2001 Physica A 293 130{142
[5] Paradisi P, Cesari R, Mainardi F, Maurizi A and Tampieri F 2001 Phys. Chem. Earth 26 275{279
[6] Paradisi P, Cesari R, Donateo A, Contini D and Allegrini P 2012 Nonlinear Proc. Geoph. 19 113{126 p. Paradisi et al., Corrigendum, Nonlin. Processes Geophys. 19, 685 (2012)
[7] Cheng X, Hu F and Zeng Q 2014 Chin. Sci. Bull. 59 4890{4898 ISSN 1861-9541
[8] Goulart A, Lazo M, Suarez J and Moreira D A 2017 Physica A 477 9{19
[9] Ingenhousz J 1784 Vermischte schrifen physisch medicinischen inhalts vol 2 (Vienna: Wappler)
[10] Bywater J 1828, rst published in 1819 Physiological Fragments: To Which are Added Supplementary Observations, to Show that Vital Energies are of the Same Nature, and Both Derived from Solar Light (London: R. Hunter)
[11] Brown R 1828 Phil. Mag. 4 161{173
[12] Brown R 1829 Phil. Mag. 6 161{166
[13] Derek Abbott D, Davis B R, Phillips N J and Eshraghian K 1996 IEEE Trans. Educ. 39 1{13
[14] Perrin J 1908 Compt. Rend. 146 967
[15] Perrin J 1909 Ann. Chim. Phys. 18 5
[16] Metzler R and Klafter J 2000 Phys. Rep. 339 1{77
[17] Paradisi P, Kaniadakis G and Scarfone A M 2015 Chaos Soliton Fract 81 407{11
[18] Paradisi P, Kaniadakis G and Scarfone A M (eds) 2015 The emergence of self-organization in complex systems (Amsterdam: Elsevier) Special Issue - Chaos, Soliton Fract, Vol. 81(B), Pages 407-588
[19] Metzler R and Klafter J 2004 J. Phys. A: Math. Theor. 37 R161{R208
[20] Klages R, Radons G and Sokolov I M (eds) 2008 Anomalous Transport: Foundations and Applications (Weinheim: Wiley-VCH)
[21] Richardson L 1926 Proc. R. Soc. A 110 709
[22] Montroll E 1964 Proc. Symp. Appl. Math., Am. Math. Soc. 16 193{220
[23] Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167{181
[24] Scher H and Montroll E W 1975 Phys. Rev. B 12(6) 2455{2477
[25] Solomon T, Weeks E and Swinney H 1993 Phys. Rev. Lett. 71 3975{3978
[26] Kraichnan R 1994 Phys. Rev. Lett. 72 1016{1019
[27] Clausen S, Helgesen G and Skjeltorp A 1997 Physica A 238 198{210
[28] Venkataramani S, Antonsen T and Ott E 1998 Phys. D 112 412{440
[29] Periasamy N and Verkman A 1998 Biophys. J. 75 557{567
[30] Del-Castillo-Negrete D, Carreras B and Lynch V 2004 Phys. Plasmas 11 3854{3864
[31] Florian Furstenberg F, Dolgushev M and Blumen A 2015 Chaos Soliton Fract 81 527 { 533 ISSN 0960-0779
[32] Tolic-N rrelykke I M, Munteanu E L, Thon G, Odderhede L and Berg-S rensen K 2004 Phys. Rev. Lett. 93 078102
[33] Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
[34] Gal N and Weihs D 2010 Phys. Rev. E 81 020903(R)
[35] Barkai E, Garini Y and Metzler R 2012 Phys. Today 65 29
[36] Manzo C and Garcia-Parajo M 2015 Rep. Progr. Phys. 78 124601
[37] Ariel G, Rabani A, Benisty S, Partridge J D, Harshey R M and Be'Er A 2015 Nat. Comm. 6
[38] He W, Song H, Su Y, Geng L, Ackerson B, Peng H and Tong P 2016 Nat. Comm. 7
[39] Jeon J H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-S rensen K, Oddershede L and Metzler R 2011 Phys. Rev. Lett. 106 048103
[40] Ho ing F and Franosch T 2013 Rep. Prog. Phys. 76 046602
[41] Manzo C, Torreno-Pina J A, Massignan P, Lapeyre G J, Lewenstein M and Garcia{Parajo M F 2015 Phys. Rev. X 5 011021
[42] Molina-Garc a D, Pham T M, Paradisi P, Manzo C and Pagnini G 2016 Phys. Rev. E 94 052147
[43] Reverey J, Jeon J H, Bao H, Leippe M, Metzler R and Selhuber-Unkel C 2015 Sci. Rep. 5 11690
[44] Metzler R, Jeon J H and Cherstvy A 2016 Biochim. Biophys. Acta 1858 24512467
[45] Jeon J H, Javanainen M, Martinez-Seara H, Metzler R and Vattulainen I 2016 Phys. Rev. X 6
[46] JA D and AS V 2008 Annu. Rev. Biophys. 37 247{263
[47] Nawrocki G, Wang P H, Yu I, Sugita Y and Feig M 2017 J. Phys. Chem. B 121 11072{11084
[48] Kuruma Y, Stano P, Ueda T and Luisi P 2009 BBA{Biomembranes 1788 567{574
[49] Luisi P, Allegretti M, de Souza T, Steiniger F, Fahr A and Stano P 2010 ChemBioChem 11 1989{1992
[50] Paradisi P, Allegrini P and Chiarugi D 2015 BMC Syst. Biol. 9
[51] Weiss G and Rubin R 1983 Adv. Chem. Phys. 52 363{505
[52] Bouchaud J P and Georges A 1990 Phys. Rep. 195 127{293
[53] and J P B 1992 J. Phys. I France 2 1705{1713
[54] Bianco S, Grigolini P and Paradisi P 2007 Chem. Phys. Lett. 438 336{340
[55] Paradisi P, Cesari R, Contini D, Donateo A and Palatella L 2009 Eur. Phys. J.-Spec. Top. 174 207{218
[56] Paradisi P, Cesari R, Donateo A, Contini D and Allegrini P 2012 Rep. Math. Phys. 70 205{220
[57] Paradisi P and Allegrini P 2015 Chaos Soliton Fract 81 451{62
[58] Paradisi P and Allegrini P 2017 Intermittency-driven complexity in signal processing Complexity and Nonlinearity in Cardiovascular Signals ed Barbieri R, Scilingo E P and Valenza G (Cham: Springer) pp 161{196 ISBN 978-3-319-58708-0
[59] Shlesinger M F, Klafter J and Wong Y M 1982 J. Stat. Phys. 27 499{512
[60] Shlesinger M F, Klafter J and West B J 1986 Physica A 140 212{218
[61] Zaburdaev V, Denisov S and Klafter J 2015 Rev. Mod. Phys. 87 483{530
[62] Burov S, Jeon J H, Metzler R and Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800{1812
[63] de Jager M, Weissing F J, Herman P M J, Nolet B A and van de Koppel J 2011 Science 332 1551{1553
[64] Mandelbrot B B and Van Ness J W 1968 SIAM Rev. 10 422{437
[65] Biagini F, Hu Y, ksendal B and Zhang T 2008 Stochastic Calculus for Fractional Brownian Motion and Applications (Springer) ISBN 978-1-85233-996-8
[66] Heppe B M O 1998 J. Fluid Mech. 357 167{198
[67] Goychuk I 2013 Adv. Chem. Phys. 150 187{253
[68] Goychuk I, Kharchenko V and Metzler R 2014 PLoS ONE 9
[69] Stella L, Lorenz C D and Kantorovich L 2014 Phys. Rev. B 89(13) 134303
[70] Massignan P, Manzo C, Torreno-Pina J, Garc a-Parajo M, Lewenstein M and Lapeyre Jr G 2014 Phys. Rev. Lett. 112 150603
[71] Lanoisele Y and Grebenkov D 2018 J. Phys. A: Math. Theor. 51
[72] Sposini V, Chechkin A V, Seno F, Pagnini G and Metzler R 2018 New J. Phys. 20 043044
[73] Cherstvy A, Chechkin A and Metzler R 2013 New J. Phys. 15 083039
[74] Jeon J H, Chechkin A V and Metzler R 2014 Phys. Chem. Chem. Phys. 16 15811{15817
[75] Cherstvy A and Metzler R 2016 Phys. Chem. Chem. Phys. 18 23840
[76] Beck C 2001 Phys. Rev. Lett. 87(18) 180601
[77] Beck C and Cohen E 2003 Physica A 322 267{275
[78] Van Der Straeten E and Beck C 2009 Phys. Rev. E 80
[79] Chubynsky M and Slater G 2014 Phys. Rev. Lett. 113 098302
[80] Chechkin A V, Seno F, Metzler R and Sokolov I M 2017 Phys. Rev. X 7(2) 021002
[81] Jain R and Sebastian K 2017 J. Chem. Sci. 129 929{937
[82] Schneider W 1990 Grey noise Stochastic processes, physics and geometry ed et al S A (Teaneck, NJ: World Sci. Publ.) p 676681
[83] Schneider W 1992 Grey noise Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988) (Cambridge: Cambridge Univ. Press) p 261282
[84] Mainardi F, Mura A and Pagnini G 2010 Int. J. Di er. Equations 2010 104505
[85] Pagnini G 2013 Fract. Calc. Appl. Anal. 16 436{453
[86] Goren o R, Mainardi F, Moretti D and Paradisi P 2002 Nonlin. Dynam. 29 129{143
[87] Paradisi P 2015 Comm. Appl. Ind. Math. 6
[88] Sandev T, Metzler R and Chechkin A 2018 Fract. Calc. Appl. Anal. 21 10{28
[89] Mura A 2011 Non-Markovian Stochastic Processes and Their Applications: From Anomalous Di usion to Time Series Analysis (Lambert Academic Publishing) Ph.D. Thesis, Physics Department, University of Bologna, 2008
[90] Mura A, Taqqu M S and Mainardi F 2008 Physica A 387 5033{5064
[91] Mura A and Pagnini G 2008 J. Phys. A: Math. Theor. 41 285003
[92] Mura A and Mainardi F 2009 Integr. Transf. Spec. F. 20 185{198
[93] Pagnini G, Mura A and Mainardi F 2012 Int. J. Stoch. Anal. 2012 427383
[94] Pagnini G, Mura A and Mainardi F 2013 Phil. Trans. R. Soc. A 371 20120154
[95] Pagnini G 2012 Fract. Calc. Appl. Anal. 15 117{127
[96] Pagnini G and Paradisi P 2016 Fract. Calc. Appl. Anal. 19 408{440
[97] Goren o R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Chem. Phys. 284 521{541
[98] Goren o R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Physica A 305 106{112
[99] Mainardi F, Luchko Y and Pagnini G 2001 Fract. Calc. Appl. Anal. 4 153{192
[100] Vitali S, Sposini V, Sliusarenko O, Paradisi P, Castellani G and Pagnini G 2018 arXiv:1806.11508
[101] D0Ovidio M, Vitali S, Sposini V, Sliusarenko O, Paradisi P, Castellani G and Pagnini G 2018 arXiv:1806.11351
[102] Gheorghiu S and Coppens M O 2004 Proc. Natl. Acad. Sci. USA 101 15852{15856
[103] Barenblatt G I 1979 Similarity, Self{Similarity, and Intermediate Asymptotics (New York: Consultants Bureau)
[104] Bodrova A S, Chechkin A V, Cherstvy A G, Safdari H, Sokolov I M and Metzler R 2016 Sci. Rep. 6 30520
[105] Sancho J M, Lacasta A M, Lindenberg K, Sokolov I M and Romero A H 2004 Phys. Rev. Lett. 92 250601
[106] Rozenfeld R, Luczka J and Talkner P 1998 Phys. Lett. A 249 409{414
[107] Luczka J, Talkner P and Hanggi P 2000 Physica A 278 18{31
[108] Luczka J and Zaborek B 2004 Acta Phys. Pol. B 35 2151{2164
[109] Ausloos M and Lambiotte R 2006 Phys. Rev. E 73 011105
[110] Pagnini G 2014 Physica A 409 29{34 ISSN 03784371
[111] Gnedenko B V and Kolmogorov A N 1954 Limit distributions for sums of independent random variables (Cambridge, MA: Addison-Wesley,)
[112] Feller W 1971 An Introduction to Probability Theory and its Applications 2nd ed vol 2 (New York: Wiley)
[113] Grigolini P, Palatella L and Ra aelli G 2001 Fractals 09 439{449
[114] Allegrini P, Bellazzini J, Bramanti G, Ignaccolo M, Grigolini P and Yang J 2002 Phys. Rev. E 66
[115] Abe S, Beck C and Cohen E G D 2007 Phys. Rev. E 76 031102
[116] Wilk G and Wlodarczyk Z 2000 Phys. Rev. Lett. 84 2770{2773
[117] Beck C 2002 Europhys. Lett. 57 329{333
[118] Reynolds A M 2003 Phys. Rev. Lett. 91 084503
[119] Paradisi P, Cesari R and Grigolini P 2009 Cent. Eur. J. Phys. 7 421{431
[120] Akin O, Paradisi P and Grigolini P 2009 J. Stat. Mech.: Theory Exp. P01013
[121] Abe S 2014 Found. Phys. 44 175{182
[122] Magdziarz M and Zorawik T 2016 Phys. Rev. E 94 022130
[123] Taylor-King J P, Klages R, Fedotov S and Van Gorder R A 2016 Phys. Rev. E 94 012104
[124] Dybiec B, Gudowska-Nowak E, Barkai E and Dubkov A A 2017 Phys. Rev. E 95(5) 052102
[125] Aghion E, Kessler D and Barkai E 2018 Eur. Phys J. B 91
[126] Viswanathan G M, da Luz M G, Raposo E and Stanley E 2011 The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge: Cambridge University Press) ISBN 9781107006799
[127] Ott E 2002 Chaos in Dynamical Systems 2nd ed (Cambridge: Cambridge University Press) ISBN 0521432154
[128] Kantelhardt J, Zschiegner S, Koscielny-Bunde E, Havlin S, Bunde A and Stanley H 2002 Physica A 316 87{114
[129] Allegrini P, Menicucci D, Bedini R, Gemignani A and Paradisi P 2010 Phys. Rev. E 82(1) 015103
[130] Chambers J M, Mallows C L and Stuck B W 1976 J. Amer. Statist. Assoc. 71 340{344
[131] Weron R 1996 Stat. Probab. Lett. 28 165{171

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:401214,
	title = {Finite-energy Levy-type motion through heterogeneous ensemble of Brownian particles},
	author = {Sliusarenko O.  Y. and Vitali S. and Sposini V. and Paradisi P. and Chechkin A. and Castellani G. and Pagnini G.},
	publisher = {IOP Publishing,, Bristol , Regno Unito},
	doi = {10.1088/1751-8121/aafe90},
	journal = {Journal of physics. A, Mathematical and theoretical (Print)},
	volume = {52},
	year = {2019}
}