2018
Journal article  Open Access

Solvability and uniqueness criteria for generalized Sylvester-type equations

De Teran F., Iannazzo B., Poloni F., Robol L.

Functional Analysis (math.FA)  Geometry and Topology  FOS: Mathematics  Mathematics - Functional Analysis  Sylvester equation  Mathematics - Rings and Algebras  Mathematics - Numerical Analysis  15A24  Algebra and Number Theory  Numerical Analysis  15A22  Eigenvalues  Matrix pencil  65F15  Numerical Analysis (math.NA)  Matrix equation  Rings and Algebras (math.RA)  Discrete Mathematics and Combinatorics 

We provide necessary and sufficient conditions for the generalized (star operator)-Sylvester matrix equation, AXB+CX(star operator)D=E, to have exactly one solution for any right-hand side E. These conditions are given for arbitrary coefficient matrices A, B, C, D (either square or rectangular) and generalize existing results for the same equation with square coefficients. We also review the known results regarding the existence and uniqueness of solution for generalized Sylvester and (star operator)-Sylvester equations.

Source: Linear algebra and its applications 542 (2018): 501–521. doi:10.1016/j.laa.2017.07.010

Publisher: North Holland [etc.], [New York], Stati Uniti d'America


[1] M. Baumann and U. Helmke. Singular value decomposition of time-varying matrices. Future Generation Computer Systems, 19(3):353 - 361, 2003. Special Issue on Geometric Numerical Algorithms.
[2] H. W. Braden. The equations AT X ± XT A = B. SIAM J. Matrix Anal. Appl., 20(2):295-302, 1999.
[3] R. Byers and D. Kressner. Structured condition numbers for invariant subspaces. SIAM J. Matrix Anal. Appl., 28(2):326-347, 2006.
[4] K.-W. E. Chu. The solution of the matrix equations AXB − CXD = E and (Y A − DZ, Y C − BZ) = (E, F ). Linear Algebra Appl., 93:93-105, 1987.
[5] F. De Ter´an, F. M. Dopico, N. Guillery, D. Montealegre, and N. Z. Reyes. The solution of the equation AX + X⋆B = 0. Linear Algebra Appl., 438:2817-2860, 2011.
[6] F. De Ter´an and B. Iannazzo. Uniqueness of solution of a generalized ⋆-sylvester matrix equation. Linear Algebra Appl., 493:323-335, 2016.
[7] A. Dmytryshyn and B. K˚agstro¨m. Coupled sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl., 36(2):580-593, 2016.
[8] R. Granat, B. K˚agstro¨m, and D. Kressner. Matlab tools for solving periodic eigenvalue problems. IFAC Proceedings Volumes, 40(14):169-174, 2007.
[9] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1994.
[10] D. Kressner, E. Mengi, I. Naki´c, and N. Truhar. Generalized eigenvalue problems with specified eigenvalues. IMA J. Numer. Anal., 34:480-501, 2014.
[11] D. Kressner, C. Schr¨oder, and D. S. Watkins. Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms, 51(2):209- 238, 2009.
[12] S. K. Mitra. The matrix equation AXB + CXD = E. SIAM J. Appl. Math., 32(4):823-825, 1977.
[13] V. V. Sergeichuk. Computation of canonical matrices for chains and cycles of linear mappings. Linear Algebra Appl., 376:235-263, 2004.
[14] V. Simoncini. Computational methods for trix equations. To appear in SIAM Review. www.dm.unibo.it/~simoncin/matrixeq.pdf.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:376258,
	title = {Solvability and uniqueness criteria for generalized Sylvester-type equations},
	author = {De Teran F. and Iannazzo B. and Poloni F. and Robol L.},
	publisher = {North Holland [etc.], [New York], Stati Uniti d'America},
	doi = {10.1016/j.laa.2017.07.010 and 10.48550/arxiv.1608.01183},
	journal = {Linear algebra and its applications},
	volume = {542},
	pages = {501–521},
	year = {2018}
}