2015
Journal article  Open Access

Exploiting spatial abstraction in predictive analytics of vehicle traffic

Andrienko N., Andrienko G., Rinzivillo S.

Geography  mobility  Mobility  Traffic modeling  visual analytics  Computers in Earth Sciences  traffic modeling  Earth and Planetary Sciences (miscellaneous)  Traffic simulation  QA  Visual analytics  Planning and Development  traffic simulation 

By applying visual analytics techniques to vehicle traffic data, we found a way to visualize and study the relationships between the traffic intensity and movement speed on links of a spatially abstracted transportation network. We observed that the traffic intensities and speeds in an abstracted network are interrelated in the same way as they are in a detailed street network at the level of street segments. We developed interactive visual interfaces that support representing these interdependencies by mathematical models. To test the possibility of utilizing them for performing traffic simulations on the basis of abstracted transportation networks, we devised a prototypical simulation algorithm employing these dependency models. The algorithm is embedded in an interactive visual environment for defining traffic scenarios, running simulations, and exploring their results. Our research demonstrates a principal possibility of performing traffic simulations on the basis of spatially abstracted transportation networks using dependency models derived from real traffic data. This possibility needs to be comprehensively investigated and tested in collaboration with transportation domain specialists.

Source: ISPRS international journal of geo-information 4 (2015): 591–606. doi:10.3390/ijgi4020591

Publisher: MDPI, Basel


1. Gazis, D.C. Traffic Theory; Kliwer Academic: Boston, MA, USA, 2002.
2. Hudson, J.C. Scale in space and time. In Geography's Inner Worlds: Pervasive Themes in Contemporary American Geography; Abler, R.F., Marcus, M.G., Olson, J.M., Eds.; Rutgers University Press: New Brunswick, NJ, USA, 1992; pp. 280-297.
3. Goodchild, M.F. Models of scale and scales of modelling. In Modelling Scale in Geographical Information Science; Tate, N.J., Atkinson, P.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2001; pp. 3-10.
4. Mackaness, W.A. Understanding geographic space. In Generalisation of Geographic Information: Cartographic Modelling and Applications; Mackaness, W.A., Ruas, A., Sarjakoski, T., Eds.; Elsevier: Oxford, UK, 2007; pp. 1-10.
5. Lloyd, C.D. Exploring Spatial Scale in Geography; Wiley-Blackwell: Chichester, UK, 2014; p. 253.
6. Openshaw, S. The Modifiable Areal Unit Problem; Geo Books: Norwich, UK, 1984.
7. Andrienko, G.; Andrienko, N.; Demšar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.; Jern, M.; Kraak, M.-J.; Schumann, H.; Tominski, C. Space, time, and visual analytics. Int. J. Geogr. Inf. Sci. 2010, 24, 1577-1600.
8. Andrienko, N.; Andrienko, G. Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Gr. 2011, 17, 205-219,
9. Laube, P.; Purves, R. How fast is a cow? Cross-scale analysis of movement data. Trans. GIS 2011, 15, 401-418.
10. Soleymani, A.; Cachat, J.; Robinson, K.; Dodge, S.; Kalueff, A.; Weibel, R. Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement. J. Spat. Inf. Sci. (JOSIS), 2014, 8, 1-25.
11. Sewall, J.; Wilkie, D.; Lin, M.C. Interactive hybrid simulation of large-scale traffic. ACM Trans. Gr. 2011, 30, doi:10.1145/2024156.2024169.
12. Sewall, J.; Wilkie, D.; Merrell, P.; Lin, M.C. Continuum traffic simulation. Comput. Gr. Forum 2010, 29, 439-448.
13. Lighthill, M.H.; Whitham, G.B. On Kinematic waves II: A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A229 1955, 1178, 317-345.
14. Newell, G. Nonlinear effects in the dynamics of car following. Oper. Res. 1961, 9, 209-229.
15. Nagel, K.; Schreckenberg, M. A cellular automaton model for freeway traffic. J. Phys. I 1992, 2, 2221-2229.
16. Burghout, W.; Koutsopoulos, H.N.; Andreasson, I. A discrete-event mesoscopic traffic simulation model for hybrid traffic simulation. In Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference (ITSC'06), Toronto, ON, Canada, 17-20 September 2006; pp. 1102-1107.
17. DelCastillo, J.M.; Benitez, F.G. On the functional form of the speed-density relationship I: General theory. Transp. Res. Part B: Methodol. 1995, 29, 373-389.
18. Helbing, D. Derivation of a fundamental diagram for urban traffic flow. Eur. Phys. J. B 2009, 70, 229-241.
19. Bourrel, E.; Lesort, J.-B. Mixing micro and macro representations of traffic flow: A hybrid model based on the LWR theory. In Proceedings of the 82th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 12 January 2003.
20. Burghout, W.; Koutsopoulos, H.N.; Andreasson, I. Hybrid mesoscopic-microscopic traffic simulation. Transp. Res. Rec. 2005, 1034, 218-225.
21. Andrienko, G.; Andrienko, N.; Bak, P.; Keim, D.; Wrobel, S. Visual Analytics of Movement; Springer: Heidelberg, Germany, 2013.
22. Wood, J.; Slingsby, A.; Dykes, J. Visualizing the dynamics of London's bicycle hire scheme. Cartographica 2011, 46, 239-251.
23. Tobler, W. Experiments in migration mapping by computer. Am. Cartogr. 1987, 14, 155-163.
24. Andrienko, N.; Andrienko, G. A visual analytics framework for spatio-temporal analysis and modeling. Data Min. Knowl. Discov. 2013, 27, 55-83.
25. Pappalardo, L.; Rinzivillo, S.; Qu, Z.; Pedreschi, D.; Giannotti, F. Understanding the patterns of car travel. Eur. Phys. J. Spec. Top. 2013, 215, 61-73.
26. Giannotti, F.; Nanni, M.; Pedreschi, D.; Pinelli, F.; Renso, C.; Rinzivillo, S.; Trasarti, R. Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 2011, 20, 695-719.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:345622,
	title = {Exploiting spatial abstraction in predictive analytics of vehicle traffic},
	author = {Andrienko N. and Andrienko G. and Rinzivillo S.},
	publisher = {MDPI, Basel },
	doi = {10.3390/ijgi4020591},
	journal = {ISPRS international journal of geo-information},
	volume = {4},
	pages = {591–606},
	year = {2015}
}

SoBigData
SoBigData Research Infrastructure


OpenAIRE