2018
Journal article  Open Access

Fine-grained detection of inverse tone mapping in HDR images

Fan W., Valenzise G., Banterle F., Dufaux F.

High dynamic range imaging  [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing  Fisher scores  Computer Vision and Pattern Recognition  Signal Processing  Control and Systems Engineering  [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]  Electrical and Electronic Engineering  [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing  high dynamic range imaging  inverse tone mapping  Digital image forensics  Software  Inverse tone mapping 

High dynamic range (HDR) imaging enables to capture the full range of physical luminance of a real world scene, and is expected to progressively replace traditional low dynamic range (LDR) pictures and videos. Despite the increasing HDR popularity, very little attention has been devoted to new forensic problems that are characteristic to this content. In this paper, we address for the first time such kind of problem, by identifying the source of an HDR picture. Specifically, we consider the two currently most common techniques to generate an HDR image: by fusing multiple LDR images with different exposure time, or by inverse tone mapping an LDR picture. We show that, in order to apply conventional forensic tools to HDR images, they need to be properly preprocessed, and we propose and evaluate a few simple HDR forensic preprocessing strategies for this purpose. In addition, we propose a new forensic feature based on Fisher scores, calculated under Gaussian mixture models. We show that the proposed feature outperforms the popular SPAM features in classifying the HDR image source on image blocks as small as 3 x 3, which makes our method suitable to detect composite forgeries combining HDR patches originating from different acquisition processes.

Source: Signal processing (Print) 152 (2018): 178–188. doi:10.1016/j.sigpro.2018.05.028

Publisher: Elsevier, Amsterdam , Paesi Bassi


[1] P. E. Debevec, J. Malik, Recovering high dynamic range radiance maps from photographs, in: Proc. SIGGRAPH, 1997, pp. 369-378.
[2] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting, Morgan Kaufmann, 2010.
[3] F. Banterle, A. Artusi, K. Debattista, A. Chalmers, Advanced High Dynamic Range Imaging, AK Peters / CRC Press, 2011.
[4] F. Dufaux, P. L. Callet, R. Mantiuk, M. Mrak, High Dynamic Range Video: From Acquisition, to Display and Applications, Academic Press, 2016.
[6] T. Richter, On the standardization of the JPEG XT image compression, in: Picture Coding Symposium (PCS), 2013, IEEE, 2013, pp. 37-40.
[7] ITU-R, The present state of ultra-high definition television, ITU-R Recommendation BT.2246-6 (March 2017).
[8] A. Chalmers, K. Debattista, HDR video past, present and future: A perspective, Signal Processing: Image Communication 54 (2017) 49-55.
[9] F. Banterle, K. Debattista, A. Artusi, S. N. Pattanaik, K. Myszkowski, P. Ledda, A. Chalmers, High dynamic range imaging and low dynamic range expansion for generating HDR content, Comput. Graph. Forum 28 (8) (2009) 2343-2367.
[10] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, A. Vorozcovs, High dynamic range display systems, in: Proc. SIGGRAPH, 2004, pp. 760-768.
[11] A. O. Akyu¨z, R. Fleming, B. E. Riecke, E. Reinhard, H. H. Bu¨lthoff, Do HDR displays support LDR content?: A psychophysical evaluation, ACM Trans. Graph. 26 (3).
630 [12] F. D. Simone, G. Valenzise, F. Banterle, P. Lauga, F. Dufaux, Dynamic range expansion of video sequences: a subjective quality assessment study, in: Proc. GlobalSIP, 2014, pp. 1063-1067.
[13] W. Fan, K. Wang, F. Cayre, General-purpose image forensics using patch likelihood under image statistical model, in: Proc. IEEE Int. Workshop Inf. Forensics Security, 2015, p. 6 pages.
[14] P. J. Bateman, A. T. S. Ho, J. A. Briffa, Image forensics of high dynamic range imaging, in: Proc. Digital Forensics and Watermarking, 2011, pp. 336-348.
[15] M. Stamm, K. R. Liu, Blind forensics of contrast enhancement in digital images, in: Proc. Int. Conf. on Image Processing, IEEE, 2008, pp. 3112- 3115.
[16] M. C. Stamm, K. R. Liu, Forensic detection of image manipulation using statistical intrinsic fingerprints, IEEE Transactions on Information Forensics and Security 5 (3) (2010) 492-506.
[18] Z. Fan, R. L. De Queiroz, Identification of bitmap compression history: Jpeg detection and quantizer estimation, IEEE Transactions on Image Processing 12 (2) (2003) 230-235.
[19] T. Bianchi, A. Piva, Detection of nonaligned double jpeg compression based on integer periodicity maps, IEEE Transactions on Information Forensics and Security 7 (2) (2012) 842-848.
[20] T. Pevny´, P. Bas, J. Fridrich, Steganalysis by subtractive pixel adjacency matrix, IEEE Trans. Inf. Forensics Security 5 (2) (2010) 215-224.
[21] J. Fridrich, J. Kodovsky´, Rich models for steganalysis of digital images, IEEE Trans. Inf. Forensics Security 7 (3) (2012) 868-882.
[22] T. O. Aydın, R. Mantiuk, H.-P. Seidel, Extending quality metrics to full luminance range images, in: Proc. SPIE, Vol. 6806, 2008, p. 68060B.
660 [23] G. Valenzise, F. De Simone, P. Lauga, F. Dufaux, A. Tescher, Performance evaluation of objective quality metrics for hdr image compression, in: Proc. SPIE, Vol. 9217, 2014, p. 92170C.
[24] A. Rana, G. Valenzise, F. Dufaux, Evaluation of feature detection in hdr based imaging under changes in illumination conditions, in: Multimedia (ISM), 2015 IEEE International Symposium on, IEEE, 2015, pp. 289-294.
[25] A. Rana, G. Valenzise, F. Dufaux, Learning-based adaptive tone mapping for keypoint detection, in: IEEE International Conference on Multimedia and Expo, IEEE, 2017, pp. 337-342.
[26] W. Fan, G. Valenzise, F. Banterle, F. Dufaux, Forensic detection of inverse tone mapping in HDR images, in: Proc. IEEE Int. Conf. Image Process., 2016, pp. 166-170.
[29] F. Perronnin, J. S´anchez, T. Mensink, Improving the Fisher kernel for large-scale image classifications, in: Proc. European Conf. Comput. Vis., 2010, pp. 143-156.
680 [30] G. Sharma, S. ul Hussain, F. Jurie, Local higher-order statistics (LHS) for texture categorization and facial analysis, in: Proc. European Conf. Comput. Vis., 2012, pp. 1-12.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:392816,
	title = {Fine-grained detection of inverse tone mapping in HDR images},
	author = {Fan W. and Valenzise G. and Banterle F. and Dufaux F.},
	publisher = {Elsevier, Amsterdam , Paesi Bassi},
	doi = {10.1016/j.sigpro.2018.05.028},
	journal = {Signal processing (Print)},
	volume = {152},
	pages = {178–188},
	year = {2018}
}