Berlingerio M, Coscia M, Giannotti F, Monreale A, Pedreschi D
Database Management 68P20 Graph mining Data mining Social network analysis
An important topic in complex network research is the temporal evolution of networks. Existing approaches aim at analyzing the evolution extracting properties of either the entire network or local patterns. In this paper, we focus on detecting clusters of temporal snapshots of a network, to be interpreted as eras of evolution. To this aim, we introduce a novel hierarchical clustering methodology, based on a dissimilarity measure between two temporal snapshots of the network. We devise a framework to discover and browse the eras, supporting the exploration of the evolution at any level of temporal resolution. We show how our approach applies to real networks, by detecting eras in an evolving co-authorship graph; we illustrate how the discovered temporal clustering highlights the crucial moments when the network had profound changes in its structure. Our approach is finally boosted by introducing a meaningful labeling of the obtained clusters, such as the characterizing topics of each discovered era, thus adding a semantic dimension to our analysis.
Publisher: Esculapio
@inproceedings{oai:it.cnr:prodotti:92126, title = {Discovering Eras in Evolving Social Networks}, author = {Berlingerio M and Coscia M and Giannotti F and Monreale A and Pedreschi D}, publisher = {Esculapio}, year = {2010} }