2021
Conference article  Open Access

VISIONE at Video Browser Showdown 2021

Amato G., Bolettieri P., Falchi F., Gennaro C., Messina N., Vadicamo L., Vairo C.

Deep learning  Content based image retrieval  Video retrieval  Content-Based Video Retrieval  Surrogate Text Representation  VBS challenge  CBIR  Video Search  Information Search and Retrieval  Large scale information retrieval 

This paper presents the second release of VISIONE, a tool for effective video search on large-scale collections. It allows users to search for videos using textual descriptions, keywords, occurrence of objects and their spatial relationships, occurrence of colors and their spatial relationships, and image similarity. One of the main features of our system is that it employs specially designed textual encodings for indexing and searching video content using the mature and scalable Apache Lucene full-text search engine.

Source: MMM 2021 - 27th International Conference on Multimedia Modeling, pp. 473–478, Prague, Czech Republic, 22-24/06/2021


Metrics



Back to previous page
BibTeX entry
@inproceedings{oai:it.cnr:prodotti:454281,
	title = {VISIONE at Video Browser Showdown 2021},
	author = {Amato G. and Bolettieri P. and Falchi F. and Gennaro C. and Messina N. and Vadicamo L. and Vairo C.},
	doi = {10.1007/978-3-030-67835-7_47},
	booktitle = {MMM 2021 - 27th International Conference on Multimedia Modeling, pp. 473–478, Prague, Czech Republic, 22-24/06/2021},
	year = {2021}
}

AI4EU
A European AI On Demand Platform and Ecosystem

AI4Media
A European Excellence Centre for Media, Society and Democracy


OpenAIRE