[1] M. Courtemanche, R. J. Ramirez, S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, American Journal of Physiology-Heart and Circulatory Physiology 275 (1) (1998) H301-H321.
[2] P. Stewart, O. V. Aslanidi, D. Noble, P. J. Noble, M. R. Boyett, H. Zhang, Mathematical models of the electrical action potential of purkinje fibre cells, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1896) (2009) 2225-2255.
[3] K. Ten Tusscher, A. Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Physics in Medicine & Biology 51 (23) (2006) 6141.
[4] A. Kaboudian, E. M. Cherry, F. H. Fenton, Real-time interactive simulations of large-scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications, Science advances 5 (3) (2019) eaav6019.
[5] J. E. Hall, Guyton and Hall textbook of medical physiology e-Book, Elsevier Health Sciences, 2015.
[6] D. M. Harrild, C. S. Henriquez, A computer model of normal conduction in the human atria, Circulation research 87 (7) (2000) e25-e36.
[7] T. N. James, The internodal pathways of the human heart, Progress in cardiovascular diseases 43 (6) (2001) 495-535.
[8] F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, E. R. McVeigh, Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging, Circulation: arrhythmia and electrophysiology 9 (4) (2016) e004133.
[9] S. Karas Jr, R. C. Elkins, Mechanism of function of the mitral valve leaflets, chordae tendineae and left ventricular papillary muscles in dogs, Circulation research 26 (6) (1970) 689-696.
[10] R. Bordas, V. Grau, R. Burton, P. Hales, J. Schneider, D. Gavaghan, P. Kohl, B. Rodriguez, Integrated approach for the study of anatomical variability in the cardiac purkinje system: from high resolution mri to electrophysiology simulation, in: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, 2010, pp. 6793-6796.
[11] A. Saha, S. Roy, Papillary muscles of right ventricle - morphological variations and its clinical relevance, Cardiovascular Pathology 34 (2018) 22-27.
[12] R. A. Bergman, A. K. Afifi, et al., Atlas of microscopic anatomy.
[13] J. Tranum-Jensen, A. Wilde, J. T. Vermeulen, M. J. Janse, Morphology of electrophysiologically identified junctions between purkinje fibers and ventricular muscle in rabbit and pig hearts., Circulation research 69 (2) (1991) 429-437.
[14] O. Berenfeld, J. Jalife, Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles, Circulation Research 82 (10) (1998) 1063-1077.
[15] G. A. Holzapfel, R. W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1902) (2009) 3445-3475.
[16] G. Seemann, C. Höper, F. B. Sachse, O. Dössel, A. V. Holden, H. Zhang, Heterogeneous three-dimensional anatomical and electrophys-
[17] D. Nickerson, N. Smith, P. Hunter, New developments in a strongly coupled cardiac electromechanical model, EP Europace 7 (s2) (2005) S118-S127.
[18] S. G. Campbell, E. Howard, J. Aguado-Sierra, B. A. Coppola, J. H. Omens, L. J. Mulligan, A. D. McCulloch, R. C. Kerckhoffs, Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics, Experimental physiology 94 (5) (2009) 541-552.
[19] G. Buckberg, A. Mahajan, S. Saleh, J. I. Hoffman, C. Coghlan, Structure and function relationships of the helical ventricular myocardial band, The Journal of thoracic and cardiovascular surgery 136 (3) (2008) 578-589.
[20] R. Doste, D. Soto-Iglesias, G. Bernardino, A. Alcaine, R. Sebastian, S. Giffard-Roisin, M. Sermesant, A. Berruezo, D. Sanchez-Quintana, O. Camara, A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts, International journal for numerical methods in biomedical engineering 35 (4) (2019) e3185.
[21] N. A. Trayanova, Whole-heart modeling: applications to cardiac electrophysiology and electromechanics, Circulation research 108 (1) (2011) 113- 128.
[22] A. J. Pullan, K. A. Tomlinson, P. J. Hunter, A finite element method for an eikonal equation model of myocardial excitation wavefront propagation, SIAM Journal on Applied Mathematics 63 (1) (2002) 324-350.
[23] J. J. B. Jack, D. Noble, R. W. Tsien, Electric current flow in excitable cells, Clarendon Press Oxford, 1975.
[25] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, Journal of the Royal Society Interface 11 (97) (2014) 20140352.
[26] D. E. Hurtado, S. Castro, A. Gizzi, Computational modeling of non-linear diffusion in cardiac electrophysiology: A novel porous-medium approach, Computer Methods in Applied Mechanics and Engineering 300 (2016) 70- 83.
[27] N. G. Sepulveda, B. J. Roth, J. P. Wikswo Jr, Current injection into a two-dimensional anisotropic bidomain., Biophysical journal 55 (5) (1989) 987.
[28] L. Tung, A bi-domain model for describing ischemic myocardial dc potentials., Ph.D. thesis, Massachusetts Institute of Technology (1978).
[29] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, A. Tveito, Computing the electrical activity in the heart, Vol. 1, Springer Science & Business Media, 2007.
[30] E. Vigmond, R. W. Dos Santos, A. Prassl, M. Deo, G. Plank, Solvers for the cardiac bidomain equations, Progress in biophysics and molecular biology 96 (1-3) (2008) 3-18.
[31] J. P. Wikswo Jr, S.-F. Lin, R. A. Abbas, Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation, Biophysical journal 69 (6) (1995) 2195-2210.
[35] M. Potse, B. Dubé, J. Richer, A. Vinet, R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Transactions on Biomedical Engineering 53 (12) (2006) 2425-2435.
[36] M. Wilhelms, H. Hettmann, M. M. C. Maleckar, J. T. Koivumäki, O. Dössel, G. Seemann, Benchmarking electrophysiological models of human atrial myocytes, Frontiers in physiology 3 (2013) 487.
[37] S. Inada, J. Hancox, H. Zhang, M. Boyett, One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodalhis cells, Biophysical journal 97 (8) (2009) 2117-2127.
[38] V. D. Corino, F. Sandberg, L. T. Mainardi, L. Sornmo, An atrioventricular node model for analysis of the ventricular response during atrial fibrillation, IEEE transactions on biomedical engineering 58 (12) (2011) 3386-3395.
[39] B. Baillargeon, N. Rebelo, D. D. Fox, R. L. Taylor, E. Kuhl, The living heart project: a robust and integrative simulator for human heart function, European Journal of Mechanics-A/Solids 48 (2014) 38-47.
[40] S. Sugiura, T. Washio, A. Hatano, J. Okada, H. Watanabe, T. Hisada, Multi-scale simulations of cardiac electrophysiology and mechanics using the university of tokyo heart simulator, Progress in biophysics and molecular biology 110 (2-3) (2012) 380-389.
[41] F. Viola, V. Meschini, R. Verzicco, Fluid-structure-electrophysiology interaction (fsei) in the left-heart: A multi-way coupled computational model, European Journal of Mechanics-B/Fluids 79 (2020) 212-232.
[43] T. Lassila, M. Lange, A. R. P. Perez, K. Lekadir, X. Albà, G. Piella, A. F. Frangi, Electrophysiology model for a human heart with ischemic scar and realistic purkinje network, in: Statistical Atlases and Computational Models of the Heart, Springer, 2015, pp. 90-97.
[44] M. Deo, P. Boyle, G. Plank, E. Vigmond, Arrhythmogenic mechanisms of the purkinje system during electric shocks: a modeling study, Heart rhythm 6 (12) (2009) 1782-1789.
[45] M. Deo, P. M. Boyle, A. M. Kim, E. J. Vigmond, Arrhythmogenesis by single ectopic beats originating in the purkinje system, American Journal of Physiology-Heart and Circulatory Physiology 299 (4) (2010) H1002-H1011.
[46] E. Behradfar, A. Nygren, E. J. Vigmond, The role of purkinje-myocardial coupling during ventricular arrhythmia: a modeling study, PloS one 9 (2).
[47] T. Ijiri, T. Ashihara, T. Yamaguchi, K. Takayama, T. Igarashi, T. Shimada, T. Namba, R. Haraguchi, K. Nakazawa, A procedural method for modeling the purkinje fibers of the heart, The journal of physiological sciences (2008) 0810170079-0810170079.
[48] A. Lopez-Perez, R. Sebastian, J. M. Ferrero, Three-dimensional cardiac computational modelling: methods, features and applications, Biomedical engineering online 14 (1) (2015) 35.
[49] C. Vergara, M. Lange, S. Palamara, T. Lassila, A. F. Frangi, A. Quarteroni, A coupled 3d-1d numerical monodomain solver for cardiac electrical activation in the myocardium with detailed purkinje network, Journal of Computational Physics 308 (2016) 218-238.
[50] P. Pathmanathan, M. O. Bernabeu, R. Bordas, J. Cooper, A. Garny, J. M. Pitt-Francis, J. P. Whiteley, D. J. Gavaghan, A numerical guide to the solution of the bidomain equations of cardiac electrophysiology, Progress in biophysics and molecular biology 102 (2) (2010) 136-155.
[51] N. A. Trayanova, J. Constantino, V. Gurev, Electromechanical models of the ventricles, American Journal of Physiology-Heart and Circulatory Physiology 301 (2) (2011) H279-H286.
[52] J. Cooper, A. Corrias, D. Gavaghan, D. Noble, Considerations for the use of cellular electrophysiology models within cardiac tissue simulations, Progress in biophysics and molecular biology 107 (1) (2011) 74-80.
[53] A. Loppini, A. Gizzi, R. Ruiz-Baier, C. Cherubini, F. H. Fenton, S. Filippi, Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics, Frontiers in physiology 9 (2018) 1714.
[54] R. H. Clayton, Y. Aboelkassem, C. D. Cantwell, C. Corrado, T. Delhaas, W. Huberts, C. L. Lei, H. Ni, A. V. Panfilov, C. Roney, et al., An audit of uncertainty in multi-scale cardiac electrophysiology models, Philosophical Transactions of the Royal Society A 378 (2173) (2020) 20190335.
[55] E. C. Vasconcellos, E. W. Clua, F. H. Fenton, M. Zamith, Accelerating simulations of cardiac electrical dynamics through a multi-gpu platform and an optimized data structure, Concurrency and Computation: Practice and Experience 32 (5) (2020) e5528.
[61] A. Saha, S. Roy, Papillary muscles of left ventricle - morphological variations and its clinical relevance, Indian heart journal 70 (6) (2018) 894-900.
[70] L. N. Trefethen, D. Bau III, Numerical linear algebra, Vol. 50, Siam, 1997.
[93] L. W.-T. Ng, M. Eldred, Multifidelity uncertainty quantification using nonintrusive polynomial chaos and stochastic collocation, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1852.
[94] R. Molléro, X. Pennec, H. Delingette, A. Garny, N. Ayache, M. Sermesant, Multifidelity-cma: a multifidelity approach for efficient personalisation of 3d cardiac electromechanical models, Biomechanics and modeling in mechanobiology 17 (1) (2018) 285-300.
[95] C. M. Fleeter, G. Geraci, D. E. Schiavazzi, A. M. Kahn, A. L. Marsden, Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics, Computer methods in applied mechanics and engineering 365 (2020) 113030.