Reggiannini M, Bedini L
Remote sensing SAR Radon transform speckle noise filtering maritime traffic monitoring wake detection and analysis
The work described in this document concerns the estimation of the kinematics of a navigating vessel. This task can be accomplished through the exploitation of satellite-borne systems for Earth observation. Indeed, Synthetic Aperture Radar (SAR) and optical sensors installed aboard satellites (European Space Agency Sentinel, ImageSat International Earth Remote Observation System, Italian Space Agency Constellation of Small Satellites for Mediterranean basin Observation) return multi-resolution maps providing information about the marine surface. A moving ship represented through satellite imaging results in a bright oblong object, with a peculiar wake pattern generated by the ship’s passage throughout the water. By employing specifically tailored computer vision methods, these vessel features can be identified and individually analyzed for what concerns geometrical and radiometric properties, backscatterers spatial distribution and the spectral content of the wake components. This paper proposes a method for the automatic detection of the vessel’s motion-related features and their exploitation to provide an estimation of the vessel velocity vector. In particular, the ship’s related wake pattern is considered as a crucial target of interest for the purposes mentioned. The corresponding wake detection module has been implemented adopting a novel approach, i.e., by introducing a specifically tailored gradient estimator in the early processing stages. This results in the enhancement of the turbulent wake detection performance. The resulting overall procedure may also be included in marine surveillance systems in charge of detecting illegal maritime traffic, combating unauthorized fishing, irregular migration and related smuggling activities.
Source: ELECTRONICS, vol. 8 (issue 2)
@article{oai:it.cnr:prodotti:399525, title = {Multi-sensor satellite data processing for marine traffic understanding}, author = {Reggiannini M and Bedini L}, year = {2019} }