1. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. CoRR abs/1806.08049 (2018)
2. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learning Research 2, 499-526 (2002)
3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC press (1984)
4. Breslow, L.A., Aha, D.W.: Simplifying decision trees: A survey. The Knowledge Engineering Review 12, 1-40 (1997)
5. Cohen, W.W.: Fast effective rule induction. In: ICML. pp. 115-123. Morgan Kaufmann (1995)
6. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37-45. Elsevier (1994)
7. Danks, D., London, A.J.: Algorithmic bias in autonomous systems. In: IJCAI. pp. 4691- 4697. ijcai.org (2017)
8. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1-30 (2006)
9. Freitas, A.A.: Comprehensible classification models: A position paper. ACM SIGKDD explorations newsletter 15(1), 1-10 (2014)
10. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rulebased explanations of black box decision systems. CoRR abs/1805.10820 (2018)
11. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Pedreschi, D., Giannotti, F.: A survey of methods for explaining black box models. ACM CSUR 51(5), 93:1-93:42 (Aug 2018)
12. Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.): Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, vol. 207. Springer (2006)
13. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction, 2nd Edition. Springer series in statistics, Springer (2009)
14. Huysmans, J., et al.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decision Support Systems 51(1), 141-154 (2011)
15. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: A study on high-dimensional spaces. Knowl. Inf. Syst. 12(1), 95-116 (2007)
16. Katz, G., Shabtai, A., Rokach, L., Ofek, N.: ConfDTree: A statistical method for improving decision trees. J. Comput. Sci. Technol. 29(3), 392-407 (2014)
17. Kim, J.: Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis 53(11), 3735-3745 (2009)
18. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI. pp. 1137-1145. Morgan Kaufmann (1995)
19. Kononenko, I., et al.: An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research 11, 1-18 (2010)
20. Li, R., Belford, G.G.: Instability of decision tree classification algorithms. In: KDD. pp. 570-575. ACM (2002)
21. Nogueira, S., Brown, G.: Measuring the stability of feature selection. In: ECML/PKDD (2). Lecture Notes in Computer Science, vol. 9852, pp. 442-457. Springer (2016)
22. Oates, T., Jensen, D.: The effects of training set size on decision tree complexity. In: Proc. of Int. Conf. on Machine Learning (ICML 1997). pp. 254-262. Morgan Kaufmann (1997)
23. Olvera-Lo´pez, J.A., Carrasco-Ochoa, J.A., Mart´ınez Trinidad, J.F., Kittler, J.: A review of instance selection methods. Artif. Intell. Rev. 34(2), 133-143 (2010)
24. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (1993)
25. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: ECML. Lecture Notes in Computer Science, vol. 667, pp. 3-20. Springer (1993)
26. Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why should I trust you?”: Explaining the predictions of any classifier. In: KDD. pp. 1135-1144. ACM (2016)
27. Ruggieri, S.: YaDT: Yet another decision tree builder. In: ICTAI. pp. 260-265. IEEE Computer Society (2004)
28. Schwarz, S., Pawlik, M., Augsten, N.: A new perspective on the tree edit distance. In: SISAP. Lecture Notes in Computer Science, vol. 10609, pp. 156-170. Springer (2017)
29. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) pp. 267-288 (1996)
30. Tikhonov, A.: Solution of incorrectly formulated problems and the regularization method. Soviet Meth. Dokl. 4, 1035-1038 (1963)
31. Turney, P.D.: Technical note: Bias and the quantification of stability. Machine Learning 20(1- 2), 23-33 (1995)
32. Yan, X., Su, X.: Linear regression analysis: theory and computing. World Scientific (2009)
33. Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: SDM. pp. 331-335. SIAM (2003)