2018
Journal article  Open Access

SfM-based method to assess gorgonian forests (Paramuricea clavata (Cnidaria, Octocorallia))

Palma M., Casado M. R., Pantaleo U., Pavoni G., Pica D., Cerrano C.

animal forest  Animal forest  Good Environmental Status  conservation  Point cloud classification  environmental accounting  Conservation  Environmental accounting  General Earth and Planetary Sciences  point cloud classification 

Animal forests promote marine habitats morphological complexity and functioning. The red gorgonian, Paramuricea clavata, is a key structuring species of the Mediterranean coralligenous habitat and an indicator species of climate effects on habitat functioning. P. clavata metrics such as population structure, morphology and biomass inform on the overall health of coralligenous habitats, but the estimation of these metrics is time and cost consuming, and often requires destructive sampling. As a consequence, the implementation of long-term and wide-area monitoring programmes is limited. This study proposes a novel and transferable Structure from Motion (SfM) based method for the estimation of gorgonian population structure (i.e., maximal height, density, abundance), morphometries (i.e., maximal width, fan surface) and biomass (i.e., coenenchymal Dry Weight, Ash Free DriedWeight). The method includes the estimation of a novel metric (3D canopy surface) describing the gorgonian forest as a mosaic of planes generated by fitting multiple 5 cm × 5 cm facets to a SfM generated point cloud. The performance of the method is assessed for two different cameras (GoPro Hero4 and Sony NEX7). Results showed that for highly dense populations (17 colonies/m2), the SfM-method had lower accuracies in estimating the gorgonians density for both cameras (60% to 89%) than for medium to low density populations (14 and 7 colonies/m2) (71% to 100%). Results for the validation of the method showed that the correlation between ground truth and SfM estimates for maximal height, maximal width and fan surface were between R2 = 0.63 and R2 = 0.9, and R2 = 0.99 for coenenchymal surface estimation. The methodological approach was used to estimate the biomass of the gorgonian population within the study area and across the coralligenous habitat between -25 to -40 m depth in the Portofino Marine Protected Area. For that purpose, the coenenchymal surface of sampled colonies was obtained and used for the calculations. Results showed biomass values of dry weight and ash free dry weight of 220 g and 32 g for the studied area and to 365 kg and 55 Kg for the coralligenous habitat in the Marine Protected Area. This study highlighted the feasibility of the methodology for the quantification of P. clavata metrics as well as the potential of the SfM-method to improve current predictions of the status of the coralligenous habitat in the Mediterranean sea and overall management of threatened ecosystems. © 2018 by the authors.

Source: Remote sensing (Basel) 10 (2018): 1–21. doi:10.3390/rs10071154

Publisher: Molecular Diversity Preservation International, Basel


1. Sánchez, J.A. Diversity and evolution of octocoral animal forests at both sides of tropical America. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Springer International Publishing: Cham, Switzerland, 2015; pp. 1-33.
2. Ballesteros, E. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 2006, 44, 123-195.
3. Rossi, S. The destruction of the 'animal forests' in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast. Manag. 2013, 84, 77-85.
4. Gori, A.; Bavestrello, G.; Grinyó, J.; Dominguez-Carrió, C.; Ambroso, S.; Bo, M. Animal Forests in Deep Coastal Bottoms and Continental Shelf of the Mediterranean Sea. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Springer International Publishing: Cham, Switzerland, 2017; pp. 1-27.
5. Valisano, L.; Notari, F.; Mori, M.; Cerrano, C. Temporal variability of sedimentation rates and mobile fauna inside and outside a gorgonian garden. Mar. Ecol. 2016, 37, 1303-1314.
6. Ponti, M.; Grech, D.; Mori, M.; Perlini, R.A.; Ventra, V.; Panzalis, P.A.; Cerrano, C. The role of gorgonians on the diversity of vagile benthic fauna in Mediterranean rocky habitats. Mar. Biol. 2016, 163, 1-14.
7. Mistri, M.; Ceccherelli, V.U. Growth and secondary production of the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 1994, 103, 291-296.
8. Grigg, R.W. Orientation and growth form of sea fans. Limnol. Oceanogr. 1972, 17, 185-192.
9. Gili, J.M.; Coma, R. Benthic suspension feeders: Their paramount role in littoral marine food webs. Trends Ecol. Evolut. 1998, 13, 316-321.
10. Previati, M.; Scinto, A.; Cerrano, C.; Osinga, R. Oxygen consumption in Mediterranean octocorals under different temperatures. J. Exp. Mar. Biol. Ecol. 2010, 390, 39-48.
11. Vezzulli, L.; Colwell, R.R.; Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 2013, 65, 817-825.
12. Linares, C.; Coma, R.; Mariani, S.; Díaz, D.; Hereu, B.; Zabala, M. Early life history of the Mediterranean gorgonian Paramuricea clavata: Implications for population dynamics. Invert. Biol. 2008, 127, 1-11, doi:10.1111/j.1744-7410.2007.00109.x.
13. Cerrano, C.; Bavestrello, G.; Bianchi, C.N.; Cattaneo-Vietti, R.; Bava, S.; Morganti, C.; Morri, C.; Picco, P.; Sara, G.; Schiaparelli, S.; et al. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol. Lett. 2000, 3, 284-293.
14. Linares, C.; Coma, R.; Zabala, M. Restoration of threatened red gorgonian populations: An experimental and modelling approach. Biol. Conserv. 2008, 141, 427-437.
15. Cerrano, C.; Bavestrello, G. Medium-term effects of die-off of rocky benthos in the Ligurian Sea. What can we learn from gorgonians? Chem. Ecol. 2008, 24, 73-82.
16. Cerrano, C.; Bavestrello, G. Mass mortalities and extinctions. In Marine Hard Bottom Communities; Springer: Berlin/Heidelberg, Germany, 2009; pp. 295-307.
17. Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Diaz, D.; Harmelin, J.G.; Gambi, M.; Kersting, D.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Chang. Biol. 2009, 15, 1090-1103.
18. Vezzulli, L.; Previati, M.; Pruzzo, C.; Marchese, A.; Bourne, D.G.; Cerrano, C. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ. Microbiol. 2010, 12, 2007-2019.
19. Huete-Stauffer, C.; Vielmini, I.; Palma, M.; Navone, A.; Panzalis, P.; Vezzulli, L.; Misic, C.; Cerrano, C. Paramuricea clavata (Anthozoa, Octocorallia) loss in the Marine Protected Area of Tavolara (Sardinia, Italy) due to a mass mortality event. Mar. Ecol. 2011, 32, 107-116.
20. Santangelo, G.; Cupido, R.; Cocito, S.; Bramanti, L.; Priori, C.; Erra, F.; Iannelli, M. Effects of increased mortality on gorgonian corals (Cnidaria, Octocorallia): different demographic features may lead affected populations to unexpected recovery and new equilibrium points. Hydrobiologia 2015, 759, 171-187.
21. Mokhtar-jamaï, K.; Pascual, M.; Ledoux, J.B.; Coma, R.; Féral, J.P.; Garrabou, J.; Aurelle, D. From global to local genetic structuring in the red gorgonian Paramuricea clavata: The interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 2011, 20, 3291-3305.
22. Coma, R.; Zabala, M.; Gili, J.M. Sexual reproductive effort in the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 1995, 117, 185-192.
23. Coma, R.; Ribes, M.; Zabala, M.; Gili, J.M. Growth in a modular colonial marine invertebrate. Estuar. Coast. Shelf Sci. 1998, 47, 459-470.
24. Cerrano, C.; Arillo, A.; Azzini, F.; Calcinai, B.; Castellano, L.; Muti, C.; Valisano, L.; Zega, G.; Bavestrello, G. Gorgonian population recovery after a mass mortality event. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 147-157.
25. Mistri, M. Gross morphometric relationships and growth in the Mediterranean gorgonian Paramuricea clavata. Ital. J. Zool. 1995, 62, 5-8.
26. Weinbauer, M.G.; Velimirov, B. Biomass and secondary production of the temperate gorgonian coral Eunicella cavolini (Coelenterata: Octocorallia). Mar. Ecol. Prog. Ser. 1995, 121, 211-216.
27. Deter, J.; Descamp, P.; Ballesta, L.; Boissery, P.; Holon, F. A preliminary study toward an index based on coralligenous assemblages for the ecological status assessment of Mediterranean French coastal waters. Ecol. Indic. 2012, 20, 345-352.
28. Figueira, W.; Ferrari, R.; Weatherby, E.; Porter, A.; Hawes, S.; Byrne, M. Accuracy and Precision of Habitat Structural Complexity Metrics Derived from Underwater Photogrammetry. Remote Sens. 2015, 7, 16883-16900.
29. Ferrari, R.; Figueira, W.F.; Pratchett, M.S.; Boube, T.; Adam, A.; Kobelkowsky-Vidrio, T.; Doo, S.S.; Atwood, T.B.; Byrne, M. 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Sci. Rep. 2017, 7, 16737, doi:10.1038/s41598-017-16408-z.
30. Palma, M.; Rivas Casado, M.; Pantaleo, U.; Cerrano, C. High Resolution Orthomosaics of African Coral Reefs: A Tool for Wide-Scale Benthic Monitoring. Remote Sens. 2017, 9, 705, doi:10.3390/rs9070705.
31. James, M.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, doi:10.1029/2011jf002289.
32. Wallace, L.; Lucieer, A.; Malenovsk y`, Z.; Turner, D.; Vopeˇnka, P. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 2016, 7, 62, doi:10.3390/f7030062.
33. Raoult, V.; Reid-Anderson, S.; Ferri, A.; Williamson, J.E. How reliable is Structure from Motion (SfM) over time and between observers? A case study using coral reef bommies. Remote Sens. 2017, 9, 740, doi:10.3390/rs9070740.
34. Bryson, M.; Ferrari, R.; Figueira, W.; Pizarro, O.; Madin, J.; Williams, S.; Byrne, M. Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity. Ecol. Evolut. 2017, 7, 5669-5681.
35. Royer, J.P.; Nawaf, M.M.; Merad, D.; Saccone, M.; Bianchimani, O.; Garrabou, J.; Ledoux, J.B.; Lopez-Sanz, A.; Drap, P. Photogrammetric Surveys and Geometric Processes to Analyse and Monitor Red Coral Colonies. J. Mar. Sci. Eng. 2018, 6, 42, doi:10.3390/jmse6020042.
36. Huete-Stauffer, C.; Previati, M.; Scinto, A.; Palma, M.; Pantaleo, U.; Cappanera, V.; Cerrano, C.; Imperia, C.E.A.; Portofino, M. Long-Term Monitoring in a Multi-Stresses Paramuricea clavata Population. Rapp. Comm. int. Mer Médit. 2013, 40, 654.
37. Atlante Degli Habitat Marini Sc. 1:10000-2009. Available online: http://geoservizi.regione.liguria.it/ geoserver/M1277/wms?version=1.3.0&request=getcapabilities (accessed on 30 May 2018).
38. Pergent, G. Proposal for the definition of standard methods for inventorying and monitoring coralligenous and maerl populations. In UNEP-MAP, RAC/SPA Report UNEP (DEPI)/MED WG; United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA), Cedex, Tunis 2011; volume 362, p. 20.
39. Lepareur, F. Évaluation de l'état de conservation des habitats naturels marins à l'échelle d'un site Natura 2000. Guide Méthodol. Rapp. SPN 2011, 3, 9.
40. Mitchell, N.D.; Dardeau, M.R.; Schroeder, W.W.; Benke, A.C. Secondary production of gorgonian corals in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 1992, 87, 275-281.
41. Zuiderveld, K. Contrast limited adaptive histogram equalization. Graph. Gems 1994, 474-485, doi:10.1016/b978-0-12-336156-1.50061-6.
42. Girardeau-Montaut, D. CloudCompare, Version 2.6.0 (GPL Software). 2014. Available online: http://www. cloudcompare.org/release/notes/20141026/ (accessed on 21 July 2018).
43. Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10-26.
44. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. (TOG) 2013, 32, 29, doi:10.1145/2487228.2487237.
45. Brodu, N.; Lague, D. 3D Point Cloud Classification of Complex Natural Scenes Using a Multi-Scale Dimensionality Criterion: Applications in Geomorphology; EGU General Assembly: Vienna, Austria, 2012; Volume 14, p. 4368.
46. Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference; Scarano, V., Chiara, R.D., Erra, U., Eds.; The Eurographics Association: Salerno, Italy, 2008.
47. Dewez, T.J.B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J. Facets: A CloudCompare plugin to extract geological planes from unstructured 3d point clouds. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 799-804.
48. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.
49. Linares, C.; Coma, R.; Garrabou, J.; Díaz, D.; Zabala, M. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis . J. Appl. Ecol. 2008, 45, 688-699.
50. Bramanti, L.; Benedetti, M.C.; Cupido, R.; Cocito, S.; Priori, C.; Erra, F.; Iannelli, M.; Santangelo, G. Demography of Animal Forests: The Example of Mediterranean Gorgonians. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C., Eds.; Springer: Cham, Switzerland, 2015; pp. 1-20.
51. Milazzo, M.; Chemello, R.; Badalamenti, F.; Camarda, R.; Riggio, S. The impact of human recreational activities in marine protected areas: What lessons should be learnt in the Mediterranean sea? Mar. Ecol. 2002, 23, 280-290.
52. Rossi, S.; Gili, J.M.; Garrofé, X. Net negative growth detected in a population Leptogorgia sarmentosa: Quantifying the biomass loss in a benthic soft bottom-gravel gorgonian. Mar. Biol. 2011, 158, 1631-1643.
53. Pavoni, G.; Palma, M.; Callieri, M.; Dellepiane, M.; Scopigno, R.; Cerrano, C. Quasi-Orthorectified projection for the measurement of Red Gorgonian colonies. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 853-860.
54. European Commission. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of Regions COM(2006)421 and the Committee of the Regions; European Partnership: Brussels, Belgium, 2011.
55. Franzese, P.P.; Buonocore, E.; Paoli, C.; Massa, F.; Stefano, D.; Fanciulli, G.; Miccio, A.; Mollica, E.; Navone, A.; Russo, G.F.; et al. Environmental accounting in marine protected areas: The EAMPA project. J. Environ. Account. Manag. 2015, 3, 324-332.
56. Coma, R.; Ribes, M.; Serrano, E.; Jiménez, E.; Salat, J.; Pascual, J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. USA 2009, 106, 6176-6181.
57. Cerrano, C.; Danovaro, R.; Gambi, C.; Pusceddu, A.; Riva, A.; Schiaparelli, S. Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers. Conserv. 2010, 19, 153-167.
58. White, M.; Wolff, G.A.; Lundälv, T.; Guihen, D.; Kiriakoulakis, K.; Lavaleye, M.; Duineveld, G. Cold-water coral ecosystem (Tisler Reef, Norwegian Shelf) may be a hotspot for carbon cycling. Mar. Ecol. Prog. Ser. 2012, 465, 11-23.
59. Cathalot, C.; Van Oevelen, D.; Cox, T.J.; Kutti, T.; Lavaleye, M.; Duineveld, G.; Meysman, F.J. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2015, 2, 37, doi:10.3389/fmars.2015.00037.
60. Le, J.T.; Levin, L.A.; Carson, R.T. Incorporating ecosystem services into environmental management of deep-seabed mining. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 137, 486-503.
61. Franzese, P.P.; Buonocore, E.; Donnarumma, L.; Russo, G.F. Natural capital accounting in marine protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy). Ecol. Model. 2017, 360, 290-299.
62. Picone, F.; Buonocore, E.; D'Agostaro, R.; Donati, S.; Chemello, R.; Franzese, P. Integrating natural capital assessment and marine spatial planning: A case study in the Mediterranean sea. Ecol. Model. 2017, 361, 1-13.
63. Sartoretto, S.; Schohn, T.; Bianchi, C.N.; Morri, C.; Garrabou, J.; Ballesteros, E.; Ruitton, S.; Verlaque, M.; Daniel, B.; Charbonnel, E.; et al. An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach. Mar. Pollut. Bull. 2017, 120, 222-231.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:424513,
	title = {SfM-based method to assess gorgonian forests (Paramuricea clavata (Cnidaria, Octocorallia))},
	author = {Palma M. and Casado M. R. and Pantaleo U. and Pavoni G. and Pica D. and Cerrano C.},
	publisher = {Molecular Diversity Preservation International, Basel  },
	doi = {10.3390/rs10071154},
	journal = {Remote sensing (Basel)},
	volume = {10},
	pages = {1–21},
	year = {2018}
}