Livesu M, Pietroni N, Puppo E, Sheffer A, Cignoni P
Computing methodologies Mesh models Mesh geometry models Volumetric models Shape analysis
We present a new fully automatic block-decomposition algorithm for feature preserving, strongly hex-dominant meshing, that yields results with a drastically larger percentage of hex elements than prior art. Our method is guided by a surface field that conforms to both surface curvature and feature lines, and exploits an ordered set of cutting loops that evenly cover the input surface, defining an arrangement of loops suitable for hex-element generation. We decompose the solid into coarse blocks by iteratively cutting it with surfaces bounded by these loops. The vast majority of the obtained blocks can be turned into hexahedral cells via simple midpoint subdivision. Our method produces pure hexahedral meshes in approximately 80% of the cases, and hex-dominant meshes with less than 2% non-hexahedral cells in the remaining cases. We demonstrate the robustness of our method on 70+ models, including CAD objects with features of various complexity, organic and synthetic shapes, and provide extensive comparisons to prior art, demonstrating its superiority.
Source: ACM TRANSACTIONS ON GRAPHICS, vol. 39 (issue 4), pp. 1-17
@article{oai:it.cnr:prodotti:423831, title = {LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing}, author = {Livesu M and Pietroni N and Puppo E and Sheffer A and Cignoni P}, year = {2020} }