1 Haines GH Jr. A theory of market behavior after innovation. Management Science. 1964;10(4):634–658. doi: 10.1287/mnsc.10.4.634
2 Fourt LA, Woodlock JW. Early prediction of market success for new grocery products. The Journal of Marketing. 1960; p. 31–38. doi: 10.2307/1248608
3 Ryan B, Gross NC. The diffusion of hybrid seed corn in two Iowa communities. Rural sociology. 1943;8(1):15.
4 Rogers EM. Diffusion of innovations. Simon and Schuster; 1968-2010.
5 Mellers B, Stone E, Murray T, Minster A, Rohrbaugh N, Bishop M, et al Identifying and cultivating superforecasters as a method of improving probabilistic predictions. Perspectives on Psychological Science. 2015;10(3):267–281. doi: 10.1177/1745691615577794 25987508
6 Tetlock PE, Gardner D. Superforecasting: The art and science of prediction. New York, NY, USA: Crown Publishing Group; 2016.
7 Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: KDD workshop. vol. 10. Seattle, WA; 1994. p. 359–370.
8 Jeong YS, Jeong MK, Omitaomu OA. Weighted dynamic time warping for time series classification. Pattern Recognition. 2011;44(9):2231–2240. doi: 10.1016/j.patcog.2010.09.022
9 Paparrizos J, Gravano L. k-shape: Efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. ACM; 2015. p. 1855–1870.
10 Kleinberg JM. Hubs, authorities, and communities. ACM computing surveys (CSUR). 1999;31(4es):5 doi: 10.1145/345966.345982
11 Tetlock PE, Mellers BA, Scoblic JP. Bringing probability judgments into policy debates via forecasting tournaments. Science. 2017;355(6324):481–483. doi: 10.1126/science.aal3147 28154049
12 DellaVigna S, Pope D. Predicting Experimental Results: Who Knows What? National Bureau of Economic Research; 2016.
13 Moore G. Crossing the chasm: marketing and selling high tech products to mainstream customers. New York: Harper Business Book; 1991.
14 Mahajan V, Peterson RA. Models for innovation diffusion. Newbury Park, California: Sage; 1985.
15 Peterson RA. A note on optimal adopter category determination. Journal of Marketing Research. 1973;10(3):325–329. doi: 10.2307/3149704
16 Mahajan V, Muller E, Srivastava RK. Determination of adopter categories by using innovation diffusion models. Journal of Marketing Research. 1990; p. 37–50. doi: 10.2307/3172549
17 Huh YE, Kim SH. Do early adopters upgrade early? Role of post-adoption behavior in the purchase of next-generation products. Journal of Business Research. 2008;61(1):40–46. doi: 10.1016/j.jbusres.2006.05.007
18 Coscia M. Competition and Success in the Meme Pool: a Case Study on Quickmeme.com. In: ICWSM; 2013.
19 Pennacchioli D, Rossetti G, Pappalardo L, Pedreschi D, Giannotti F, Coscia M. The three dimensions of social prominence. In: International Conference on Social Informatics. Springer; 2013. p. 319–332.
20 Martínez-Torres MR. Application of evolutionary computation techniques for the identification of innovators in open innovation communities. Expert Systems with Applications. 2013;40(7):2503–2510. doi: 10.1016/j.eswa.2012.10.070
21 Saez-Trumper D, Comarela G, Almeida V, Baeza-Yates R, Benevenuto F. Finding trendsetters in information networks. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2012. p. 1014–1022.
22 Figueiredo F, Almeida JM, Gonçalves MA, Benevenuto F. Trendlearner: Early prediction of popularity trends of user generated content. Information Sciences. 2016;349:172–187. doi: 10.1016/j.ins.2016.02.025
23 Cervellini P, Menezes AG, Mago VK. Finding Trendsetters on Yelp Dataset. In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE; 2016. p. 1–7.
24 Yu S, Christakopoulou E, Gupta A. Identifying decision makers from professional social networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM; 2016. p. 333–342.
25 Mele I, Bonchi F, Gionis A. The early-adopter graph and its application to web-page recommendation. In: Proceedings of the 21st ACM international conference on information and knowledge management. ACM; 2012. p. 1682–1686.
26 Mehmood Y, Barbieri N, Bonchi F. Modeling adoptions and the stages of the diffusion of innovations. vol. 48 Springer; 2016 p. 1–27.
27 Sha X, Quercia D, Dell’Amico M, Michiardi P. Trend makers and trend spotters in a mobile application. In: Proceedings of the 2013 conference on Computer supported cooperative work. ACM; 2013. p. 1365–1374.
28 Condon EM, Golden BL, Wasil EA. Predicting the success of nations at the Summer Olympics using neural networks. Computers & Operations Research. 1999;26(13):1243–1265. doi: 10.1016/S0305-0548(99)00003-9
29 Weissbock J, Inkpen D. Combining textual pre-game reports and statistical data for predicting success in the national hockey league. In: Canadian Conference on Artificial Intelligence. Springer; 2014. p. 251–262.
30 Cintia P, Pappalardo L, Pedreschi D. “Engine Matters”: A First Large Scale Data Driven Study on Cyclists’ Performance. In: 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW). IEEE; 2013. p. 147–153.
31 Li CT, Hsieh HP, Lin SD, Shan MK. Finding influential seed successors in social networks. In: Proceedings of the 21st International Conference on World Wide Web. ACM; 2012. p. 557–558.
32 Sarigöl E, Pfitzner R, Scholtes I, Garas A, Schweitzer F. Predicting scientific success based on coauthorship networks. EPJ Data Science. 2014;3(1):9 doi: 10.1140/epjds/s13688-014-0009-x
33 Wang D, Song C, Barabási AL. Quantifying long-term scientific impact. Science. 2013;342(6154):127–132. doi: 10.1126/science.1237825 24092745
34 Sinatra R, Wang D, Deville P, Song C, Barabási AL. Quantifying the evolution of individual scientific impact. Science. 2016;354(6312):aaf5239 doi: 10.1126/science.aaf5239 27811240
35 Thorleuchter D, Van Den Poel D. Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Systems with Applications. 2012;39(17):13026–13034. doi: 10.1016/j.eswa.2012.05.096
36 Krauss J, Nann S, Simon D, Gloor PA, Fischbach K. Predicting Movie Success and Academy Awards through Sentiment and Social Network Analysis. In: ECIS; 2008. p. 2026–2037.
37 Gupta S, Pienta R, Tamersoy A, Chau DH, Basole RC. Identifying successful investors in the startup ecosystem. In: Proceedings of the 24th International Conference on World Wide Web. ACM; 2015. p. 39–40.
38 Zhao XW, Guo Y, He Y, Jiang H, Wu Y, Li X. We know what you want to buy: a demographic-based system for product recommendation on microblogs. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2014. p. 1935–1944.
39 Ghalwash MF, Radosavljevic V, Obradovic Z. Utilizing temporal patterns for estimating uncertainty in interpretable early decision making. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2014. p. 402–411.
1. Haines GH Jr. A theory of market behavior after innovation. Management Science. 1964; 10(4):634± 658. https://doi.org/10.1287/mnsc.10.4.634
2. Fourt LA, Woodlock JW. Early prediction of market success for new grocery products. The Journal of Marketing. 1960; p. 31±38. https://doi.org/10.2307/1248608
3. Ryan B, Gross NC. The diffusion of hybrid seed corn in two Iowa communities. Rural sociology. 1943; 8 (1):15.
4. Rogers EM. Diffusion of innovations. Simon and Schuster; 1968-2010.
5. Mellers B, Stone E, Murray T, Minster A, Rohrbaugh N, Bishop M, et al. Identifying and cultivating superforecasters as a method of improving probabilistic predictions. Perspectives on Psychological Science. 2015; 10(3):267±281. https://doi.org/10.1177/1745691615577794 PMID: 25987508
6. Tetlock PE, Gardner D. Superforecasting: The art and science of prediction. New York, NY, USA: Crown Publishing Group; 2016.
7. Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: KDD workshop. vol. 10. Seattle, WA; 1994. p. 359±370.
8. Jeong YS, Jeong MK, Omitaomu OA. Weighted dynamic time warping for time series classification. Pattern Recognition. 2011; 44(9):2231±2240. https://doi.org/10.1016/j.patcog.2010.09.022
9. Paparrizos J, Gravano L. k-shape: Efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. ACM; 2015. p. 1855±1870.
10. Kleinberg JM. Hubs, authorities, and communities. ACM computing surveys (CSUR). 1999; 31(4es):5. https://doi.org/10.1145/345966.345982
11. Tetlock PE, Mellers BA, Scoblic JP. Bringing probability judgments into policy debates via forecasting tournaments. Science. 2017; 355(6324):481±483. https://doi.org/10.1126/science.aal3147 PMID: 28154049
12. DellaVigna S, Pope D. Predicting Experimental Results: Who Knows What? National Bureau of Economic Research; 2016.
13. Moore G. Crossing the chasm: marketing and selling high tech products to mainstream customers. New York: Harper Business Book; 1991.
14. Mahajan V, Peterson RA. Models for innovation diffusion. Newbury Park, California: Sage; 1985.
15. Peterson RA. A note on optimal adopter category determination. Journal of Marketing Research. 1973; 10(3):325±329. https://doi.org/10.2307/3149704
16. Mahajan V, Muller E, Srivastava RK. Determination of adopter categories by using innovation diffusion models. Journal of Marketing Research. 1990; p. 37±50. https://doi.org/10.2307/3172549
17. Huh YE, Kim SH. Do early adopters upgrade early? Role of post-adoption behavior in the purchase of next-generation products. Journal of Business Research. 2008; 61(1):40±46. https://doi.org/10.1016/j. jbusres.2006.05.007
18. Coscia M. Competition and Success in the Meme Pool: a Case Study on Quickmeme.com. In: ICWSM; 2013.
19. Pennacchioli D, Rossetti G, Pappalardo L, Pedreschi D, Giannotti F, Coscia M. The three dimensions of social prominence. In: International Conference on Social Informatics. Springer; 2013. p. 319±332.
20. MartÂõnez-Torres MR. Application of evolutionary computation techniques for the identification of innovators in open innovation communities. Expert Systems with Applications. 2013; 40(7):2503±2510. https://doi.org/10.1016/j.eswa.2012.10.070
21. Saez-Trumper D, Comarela G, Almeida V, Baeza-Yates R, Benevenuto F. Finding trendsetters in information networks. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2012. p. 1014±1022.
22. Figueiredo F, Almeida JM, GoncËalves MA, Benevenuto F. Trendlearner: Early prediction of popularity trends of user generated content. Information Sciences. 2016; 349:172±187. https://doi.org/10.1016/j. ins.2016.02.025
23. Cervellini P, Menezes AG, Mago VK. Finding Trendsetters on Yelp Dataset. In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE; 2016. p. 1±7.
24. Yu S, Christakopoulou E, Gupta A. Identifying decision makers from professional social networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM; 2016. p. 333±342.
25. Mele I, Bonchi F, Gionis A. The early-adopter graph and its application to web-page recommendation. In: Proceedings of the 21st ACM international conference on information and knowledge management. ACM; 2012. p. 1682±1686.
26. Mehmood Y, Barbieri N, Bonchi F. Modeling adoptions and the stages of the diffusion of innovations. vol. 48. Springer; 2016. p. 1±27.
27. Sha X, Quercia D, Dell'Amico M, Michiardi P. Trend makers and trend spotters in a mobile application. In: Proceedings of the 2013 conference on Computer supported cooperative work. ACM; 2013. p. 1365±1374.
28. Condon EM, Golden BL, Wasil EA. Predicting the success of nations at the Summer Olympics using neural networks. Computers & Operations Research. 1999; 26(13):1243±1265. https://doi.org/10.1016/ S0305-0548(99)00003-9
29. Weissbock J, Inkpen D. Combining textual pre-game reports and statistical data for predicting success in the national hockey league. In: Canadian Conference on Artificial Intelligence. Springer; 2014. p. 251±262.
30. Cintia P, Pappalardo L, Pedreschi D. ªEngine Mattersº: A First Large Scale Data Driven Study on Cyclists' Performance. In: 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW). IEEE; 2013. p. 147±153.
31. Li CT, Hsieh HP, Lin SD, Shan MK. Finding influential seed successors in social networks. In: Proceedings of the 21st International Conference on World Wide Web. ACM; 2012. p. 557±558.
32. SarigoÈl E, Pfitzner R, Scholtes I, Garas A, Schweitzer F. Predicting scientific success based on coauthorship networks. EPJ Data Science. 2014; 3(1):9. https://doi.org/10.1140/epjds/s13688-014-0009-x 33. Wang D, Song C, BarabaÂsi AL. Quantifying long-term scientific impact. Science. 2013; 342(6154):127± 132. https://doi.org/10.1126/science.1237825 PMID: 24092745
34. Sinatra R, Wang D, Deville P, Song C, BarabaÂsi AL. Quantifying the evolution of individual scientific impact. Science. 2016; 354(6312):aaf5239. https://doi.org/10.1126/science.aaf5239 PMID: 27811240
35. Thorleuchter D, Van Den Poel D. Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Systems with Applications. 2012; 39(17):13026±13034. https://doi. org/10.1016/j.eswa.2012.05.096
36. Krauss J, Nann S, Simon D, Gloor PA, Fischbach K. Predicting Movie Success and Academy Awards through Sentiment and Social Network Analysis. In: ECIS; 2008. p. 2026±2037.
37. Gupta S, Pienta R, Tamersoy A, Chau DH, Basole RC. Identifying successful investors in the startup ecosystem. In: Proceedings of the 24th International Conference on World Wide Web. ACM; 2015. p. 39±40.
38. Zhao XW, Guo Y, He Y, Jiang H, Wu Y, Li X. We know what you want to buy: a demographic-based system for product recommendation on microblogs. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2014. p. 1935±1944.
39. Ghalwash MF, Radosavljevic V, Obradovic Z. Utilizing temporal patterns for estimating uncertainty in interpretable early decision making. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2014. p. 402±411.