[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classi cation with Deep Convolutional Neural Networks, in: F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25, Curran Associates, Inc., 1097{1105, URL http://papers.nips.cc/paper/ 4824-imagenet-classi cation-with-deep-convolutional-neural-networks. pdf, 2012.
[2] R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on computer vision, 1440{1448, 2015.
[3] L. Deng, Y. Liu, Deep Learning in Natural Language Processing, Springer, 2018.
[4] F. Carrara, A. Esuli, T. Fagni, F. Falchi, A. Moreo Fernandez, Picture it in your mind: generating high level visual representations from textual descriptions, Information Retrieval Journal 21 (2) (2018) 208{229, ISSN 1573-7659, URL https://doi.org/10.1007/s10791-017-9318-6.
[5] A. Ortis, G. M. Farinella, S. Battiato, An Overview on Image Sentiment Analysis: Methods, Datasets and Current Challenges, in: Proceedings of the 16th International Joint Conference on e-Business and Telecommunications, ICETE 2019 - Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, Prague, Czech Republic, July 26-28, 2019., 296{306, URL https://doi.org/10.5220/0007909602900300, 2019.
[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, F. Roli, Evasion attacks against machine learning at test time, in: Joint European conference on machine learning and knowledge discovery in databases, Springer, 387{402, 2013.
[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, arXiv preprint arXiv:1312.6199 .
[8] K. Sundararajan, D. L. Woodard, Deep learning for biometrics: a survey, ACM Computing Surveys (CSUR) 51 (3) (2018) 65.
[9] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, A. Zisserman, Vggface2: A dataset for recognising faces across pose and age, in: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), IEEE, 67{74, 2018.
[10] G. Amato, F. Carrara, F. Falchi, C. Gennaro, C. Vairo, Facial-based Intrusion Detection System with Deep Learning in Embedded Devices, in: Proceedings of the 2018 International Conference on Sensors, Signal and Image Processing, ACM, 64{68, 2018.
[11] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 212{220, 2017.
[12] S. Feldstein, The Global Expansion of AI Surveillance, Working Paper, Carnegie Endowment for International Peace, 1779 Massachusetts Avenue NW, Washington, DC 20036, URL https://carnegieendowment.org/ les/ WP-Feldstein-AISurveillance nal1.pdf, 2019.
[13] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, J. Zhu, E cient Decisionbased Black-box Adversarial Attacks on Face Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7714{7722, 2019.
[15] M. Sharif, S. Bhagavatula, L. Bauer, M. K. Reiter, Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, 1528{1540, 2016.
[16] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world, arXiv preprint arXiv:1607.02533 .
[17] X. Li, F. Li, Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics., in: ICCV, 5775{5783, 2017.
[18] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, J. Zhu, Defense against adversarial attacks using high-level representation guided denoiser, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1778{1787, 2018.
[19] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world, arXiv preprint arXiv:1607.02533 .
[20] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as a defense to adversarial perturbations against deep neural networks, in: 2016 IEEE Symposium on Security and Privacy (SP), IEEE, 582{597, 2016.
[24] J. H. Metzen, T. Genewein, V. Fischer, B. Bischo , On detecting adversarial perturbations, arXiv preprint arXiv:1702.04267 .
[25] N. Carlini, D. Wagner, Adversarial examples are not easily detected: Bypassing ten detection methods, in: Proceedings of the 10th ACM Workshop on Arti cial Intelligence and Security, ACM, 3{14, 2017.
[26] F. Carrara, F. Falchi, R. Caldelli, G. Amato, R. Becarelli, Adversarial image detection in deep neural networks, Multimedia Tools and Applications 78 (3) (2019) 2815{2835.
[27] N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards con dent, interpretable and robust deep learning, arXiv preprint arXiv:1803.04765 .
[28] C. Sitawarin, D. Wagner, On the Robustness of Deep K-Nearest Neighbors, arXiv preprint arXiv:1903.08333 .
[33] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples (2014), arXiv preprint arXiv:1412.6572 .
[34] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks with momentum, arXiv preprint .
[35] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks, in: 2017 IEEE Symposium on Security and Privacy (SP), IEEE, 39{57, 2017.
[36] M. A. Turk, A. P. Pentland, Face recognition using eigenfaces, in: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 586{591, 1991.
[37] M. Wang, W. Deng, Deep face recognition: A survey, arXiv preprint arXiv:1804.06655 .
[38] F. V. Massoli, G. Amato, F. Falchi, C. Gennaro, C. Vairo, Improving Multiscale Face Recognition Using VGGFace2, in: International Conference on Image Analysis and Processing, Springer, 21{29, 2019.
[39] H. Qiu, C. Xiao, L. Yang, X. Yan, H. Lee, B. Li, SemanticAdv: Generating Adversarial Examples via Attribute-conditional Image Editing, arXiv preprint arXiv:1906.07927 .
[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as a defense to adversarial perturbations against deep neural networks, arXiv preprint arXiv:1511.04508 .
[44] G. Goswami, A. Agarwal, N. Ratha, R. Singh, M. Vatsa, Detecting and mitigating adversarial perturbations for robust face recognition, International Journal of Computer Vision 127 (6-7) (2019) 719{742.
[45] S. Sabour, Y. Cao, F. Faghri, D. J. Fleet, Adversarial manipulation of deep representations, arXiv preprint arXiv:1511.05122 .
[46] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 .