1. Kristen M Altenburger and Johan Ugander. Monophily in social networks introduces similarity among friends-of-friends. Nature human behaviour, 2(4):284-290, 2018.
2. Sevgi O Aral, James P Hughes, Bradley Stoner, William Whittington, H Hunter Handsfield, Roy M Anderson, and King K Holmes. Sexual mixing patterns in the spread of gonococcal and chlamydial infections. American Journal of Public Health, 89(6):825-833, 1999.
3. Mauro Barone and Michele Coscia. Birds of a feather scam together: Trustworthiness homophily in a business network. Social Networks, 54:228-237, 2018.
4. Aleix Bassolas and Vincenzo Nicosia. First-passage times to quantify and compare structural correlations and heterogeneity in complex systems. Communications Physics, 4(1):1-14, 2021.
5. George T Cantwell and MEJ Newman. Mixing patterns and individual differences in networks. Physical Review E, 99(4):042306, 2019.
6. Laetitia Gauvin, Mathieu Génois, Márton Karsai, Mikko Kivelä, Taro Takaguchi, Eugenio Valdano, and Christian L Vestergaard. Randomized reference models for temporal networks. arXiv preprint arXiv:1806.04032, 2018.
7. Leonardo Gutiérrez-Gómez and Jean-Charles Delvenne. Multi-hop assortativities for network classification. Journal of Complex Networks, 7(4):603-622, 2019.
8. Martin Harrigan and Christoph Fretter. The unreasonable effectiveness of address clustering. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pages 368-373. IEEE, 2016.
9. Roberto Interdonato, Martin Atzmueller, Sabrina Gaito, Rushed Kanawati, Christine Largeron, and Alessandra Sala. Feature-rich networks: going beyond complex network topologies. Applied Network Science, 4(1):1-13, 2019.
10. Simmi Marina Joseph, Salvatore Citraro, Virginia Morini, Giulio Rossetti, and Massimo Stella. Cognitive network science quantifies feelings expressed in suicide letters and reddit mental health communities. arXiv preprint arXiv:2110.15269, 2021.
11. Marc Jourdan, Sebastien Blandin, Laura Wynter, and Pralhad Deshpande. Characterizing entities in the bitcoin blockchain. In 2018 IEEE international conference on data mining workshops (ICDMW), pages 55-62. IEEE, 2018.
12. Dániel Kondor, Márton Pósfai, István Csabai, and Gábor Vattay. Do the rich get richer? an empirical analysis of the bitcoin transaction network. PloS one, 9(2):e86197, 2014.
13. Lauri Kovanen, Kimmo Kaski, János Kertész, and Jari Saramäki. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proceedings of the National Academy of Sciences, 110(45):18070-18075, 2013.
14. Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1):1-29, 2018.
15. Eun Lee, Fariba Karimi, Claudia Wagner, Hang-Hyun Jo, Markus Strohmaier, and Mirta Galesic. Homophily and minority-group size explain perception biases in social networks. Nature human behaviour, 3(10):1078-1087, 2019.
16. Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PloS one, 10(9):e0136497, 2015.
17. Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social networks. Annual review of sociology, 2001.
18. Michael Molloy, Bruce Reed, Mark Newman, Albert-László Barabási, and Duncan J Watts. A critical point for random graphs with a given degree sequence. In The Structure and Dynamics of Networks, pages 240-258. Princeton University Press, 2011.
19. James Moody. Race, school integration, and friendship segregation in america. American journal of Sociology, 107(3):679-716, 2001.
20. Virginia Morini, Laura Pollacci, and Giulio Rossetti. Toward a standard approach for echo chamber detection: Reddit case study. Applied Sciences, 11(12):5390, 2021.
21. Mark EJ Newman. Mixing patterns in networks. Physical review E, 67(2):026126, 2003.
22. Pimprenelle Parmentier, Tiphaine Viard, Benjamin Renoust, and J-F Baffier. Introducing multilayer stream graphs and layer centralities. In International Conference on Complex Networks and Their Applications, pages 684-696. Springer, 2019.
23. Leto Peel, Jean-Charles Delvenne, and Renaud Lambiotte. Multiscale mixing patterns in networks. Proceedings of the National Academy of Sciences, 115(16):4057-4062, 2018.
24. Konstantinos Pelechrinis and Dong Wei. Va-index: Quantifying assortativity patterns in networks with multidimensional nodal attributes. PloS one, 11(1):e0146188, 2016.
25. Reihaneh Rabbany, Dhivya Eswaran, Artur W Dubrawski, and Christos Faloutsos. Beyond assortativity: proclivity index for attributed networks (p ro n e). In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2017.
26. Amit Singh Rathore, Mandar R Mutalikdesai, and Sanket Patil. Analyzing trust-based mixing patterns in signed networks. In International Conference on Asian Digital Libraries, pages 63-72. Springer, 2013.
27. Cazabet Remy, Baccour Rym, and Latapy Matthieu. Tracking bitcoin users activity using community detection on a network of weak signals. In International conference on complex networks and their applications, pages 166-177. Springer, 2017.
28. Giulio Rossetti, Salvatore Citraro, and Letizia Milli. Conformity: a path-aware homophily measure for node-attributed networks. IEEE Intelligent Systems, 2021.
29. Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune Lehmann. Interaction data from the copenhagen networks study. Scientific Data, 6(1):1-10, 2019.
30. Brandon Sepulvado, Michael Lee Wood, Ethan Fridmanski, Cheng Wang, Matthew J Chandler, Omar Lizardo, and David Hachen. Predicting homophily and social network connectivity from dyadic behavioral similarity trajectory clusters. Social Science Computer Review, page 0894439320923123, 2020.
31. Wesley Shrum, Neil H Cheek Jr, and Saundra MacD. Friendship in school: Gender and racial homophily. Sociology of Education, pages 227-239, 1988.
32. Frédéric Simard. On computing distances and latencies in link streams. In 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 394-397. IEEE, 2019.
33. Frédéric Simard. Evaluating metrics in link streams. Social Network Analysis and Mining, 11(1):1-16, 2021.
34. Frédéric Simard, Clémence Magnien, and Matthieu Latapy. Computing betweenness centrality in link streams. arXiv preprint arXiv:2102.06543, 2021.
35. Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-François Pinton, Marco Quaggiotto, Wouter Van den Broeck, Corinne Régis, Bruno Lina, et al. High-resolution measurements of face-to-face contact patterns in a primary school. PloS one, 6(8):e23176, 2011.
36. Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-François Pinton, Nagham Khanafer, Corinne Régis, Byeul-a Kim, Brigitte Comte, and Nicolas Voirin. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PloS one, 8(9):e73970, 2013.
37. Bin Zhou, Xin Lu, and Petter Holme. Universal evolution patterns of degree assortativity in social networks. Social Networks, 63:47-55, 2020.
1. Altenburger, K.M., Ugander, J.: Monophily in social networks introduces similarity among friends-of-friends. Nat. Hum. Behav. 2(4), 284-290 (2018)
2. Aral, S.O., Hughes, J.P., Stoner, B., Whittington, W., Handsfield, H.H., Anderson, R.M., Holmes, K.K.: Sexual mixing patterns in the spread of gonococcal and chlamydial infections. Am. J. Public Health 89(6), 825-833 (1999)
3. Barone, M., Coscia, M.: Birds of a feather scam together: trustworthiness homophily in a business network. Soc. Netw. 54, 228-237 (2018)
4. Bassolas, A., Nicosia, V.: First-passage times to quantify and compare structural correlations and heterogeneity in complex systems. Commun. Phys. 4(1), 1-14 (2021)
5. Cantwell, G.T., Newman, M.E.J.: Mixing patterns and individual differences in networks. Phys. Rev. E 99(4), 042306 (2019)
6. Coscia, M.: The atlas for the aspiring network scientist. arXiv preprint arXiv:2101.00863 (2021)
7. Gao, J., Zhang, Y.-C., Zhou, T.: Computational socioeconomics. Phys. Rep. 817, 1-104 (2019)
8. Gauvin, L., Génois, M., Karsai, M., Kivelä, M., Takaguchi, T., Valdano, E., Vestergaard, C.L.: Randomized reference models for temporal networks. arXiv preprint arXiv:1806.04032 (2018)
9. Gutiérrez-Gómez, L., Delvenne, J.-C.: Multi-hop assortativities for network classification. J. Complex Netw. 7(4), 603-622 (2019)
10. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address clustering. In: 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 368-373. IEEE (2016)
11. Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C., Sala, A.: Feature-rich networks: going beyond complex network topologies. Appl. Netw. Sci. 4(1), 1-13 (2019)
12. Joseph, S.M., Citraro, S., Morini, V., Rossetti, G., Stella, M.: Cognitive network science quantifies feelings expressed in suicide letters and reddit mental health communities. arXiv preprint arXiv:2110.15269 (2021)
13. Jourdan, M., Blandin, S., Wynter, L., Deshpande, P.: Characterizing entities in the bitcoin blockchain. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 55-62. IEEE (2018)
14. Kondor, D., Pósfai, M., Csabai, I., Vattay, G.: Do the rich get richer? An empirical analysis of the bitcoin transaction network. PLoS ONE 9(2), e86197 (2014)
15. Kovanen, L., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. 110(45), 18070-18075 (2013)
16. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions over time. Soc. Netw. Anal. Min. 8(1), 1-29 (2018)
17. Lee, E., Karimi, F., Wagner, C., Jo, H.-H., Strohmaier, M., Galesic, M.: Homophily and minority-group size explain perception biases in social networks. Nat. Hum. Behav. 3(10), 1078-1087 (2019)
18. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10(9), e0136497 (2015)
19. McPherson, M., Smith-Lovin, L., Cook, J.M.: Homophily in social networks. Annual review of sociology, Birds of a feather (2001)
20. Molloy, M., Reed, B., Newman, M., Barabási, A.-L., Watts, D.J.: A critical point for random graphs with a given degree sequence. In: The Structure and Dynamics of Networks, pp. 240-258. Princeton University Press (2011)
21. Moody, J.: Race, school integration, and friendship segregation in America. Am. J. Sociol. 107(3), 679-716 (2001)
22. Morini, V., Pollacci, L., Rossetti, G.: Toward a standard approach for echo chamber detection: reddit case study. Appl. Sci. 11(12), 5390 (2021)
23. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)
24. Parmentier, P., Viard, T., Renoust, B., Baffier, J.-F.: Introducing multilayer stream graphs and layer centralities. In: International Conference on Complex Networks and Their Applications, pp. 684-696. Springer (2019)
25. Peel, L., Delvenne, J.-C., Lambiotte, R.: Multiscale mixing patterns in networks. Proc. Natl. Acad. Sci. 115(16), 4057-4062 (2018)
26. Pelechrinis, K., Wei, D.: VA-index: quantifying assortativity patterns in networks with multidimensional nodal attributes. PLoS ONE 11(1), e0146188 (2016)
27. Posfai, M., Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)
28. Rabbany, R., Eswaran, D., Dubrawski, A.W., Faloutsos, C.: Beyond assortativity: proclivity index for attributed networks (PRONE). In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer (2017)
29. Rathore, A.S., Mutalikdesai, M.R., Patil, S.: Analyzing trust-based mixing patterns in signed networks. In: International Conference on Asian Digital Libraries, pp. 63-72. Springer (2013)
30. Remy, C., Rym, B., Matthieu, L.: Tracking bitcoin users activity using community detection on a network of weak signals. In: International Conference on Complex Networks and Their Applications, pp. 166-177. Springer (2017)
31. Rossetti, G., Citraro, S., Milli, L.: Conformity: a path-aware homophily measure for node-attributed networks. IEEE Intell. Syst. 36, 25-34 (2021)
32. Sapiezynski, P., Stopczynski, A., Lassen, D.D., Lehmann, S.: Interaction data from the Copenhagen networks study. Sci. Data 6(1), 1-10 (2019)
33. Sepulvado, B., Wood, M.L., Fridmanski, E., Wang, C., Chandler, M.J., Lizardo, O., Hachen, D.: Predicting homophily and social network connectivity from dyadic behavioral similarity trajectory clusters. Soc. Sci. Comput. Rev. 0894439320923123 (2020)
34. Shrum, W., Cheek Jr, N.H., MacD, S.: Friendship in school: gender and racial homophily. Sociol. Educ. 227-239 (1988)
35. Simard, F.: On computing distances and latencies in link streams. In: 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 394-397. IEEE (2019)
36. Simard, F.: Evaluating metrics in link streams. Soc. Netw. Anal. Min. 11(1), 1-16 (2021)
37. Simard, F., Magnien, C., Latapy, M.: Computing betweenness centrality in link streams. arXiv preprint arXiv:2102.06543 (2021)
38. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.- F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)
39. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., Kim, B., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 8(9), e73970 (2013)
40. Zhou, B., Xin, L., Holme, P.: Universal evolution patterns of degree assortativity in social networks. Soc. Netw. 63, 47-55 (2020)