[1] T. Aktosun, D. Gintides, and V. G. Papanicolaou, The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation, Inverse Problems, 27 (2011), p. 115004.
[2] J. Aurentz, R. Vandebril, and D. S. Watkins, Fast computation of the zeros of a polynomial via factorization of the companion matrix, SIAM Journal on Scienti c Computing, 35 (2013), pp. A255{A269.
[3] , Fast computation of eigenvalues of companion, comrade, and related matrices, BIT, 54 (2014), pp. 7{30.
[4] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 942{973.
[5] , Fast and stable unitary QR algorithm, Electronic Transactions on Numerical Analysis, 44 (2015), pp. 327{341. Submitted for publication.
[6] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, A note on companion pencils, Contemporary Mathematics, 658 (2016), pp. 91{101.
[7] R. Bevilacqua, G. M. Del Corso, and L. Gemignani, A CMV{based eigensolver for companion matrices, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 1046{ 1068.
[8] D. A. Bini, Numerical computation of polynomial zeros by means of Aberth's algorithm, Numerical Algorithms, 13 (1996), pp. 179{200.
[9] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg, A fast implicit QR eigenvalue algorithm for companion matrices, Linear Algebra and its Applications, 432 (2010), pp. 2006{2031.
[10] D. A. Bini, F. Daddi, and L. Gemignani, On the shifted QR iteration applied to companion matrices, Electronic Transactions on Numerical Analysis, 18 (2004), pp. 137{152.
[11] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg, Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices, SIAM Journal on Matrix Analysis and Applications, 29 (2007), pp. 566{585.
[12] D. A. Bini and G. Fiorentino, Design, analysis, and implementation of a multiprecision polynomial root nder, Numerical Algorithms, 23 (2000), pp. 127{173.
[13] D. A. Bini, G. Fiorentino, L. Gemignani, and B. Meini, E ective fast algorithms for polynomial spectral factorization, Numerical Algorithms, 34 (2003), pp. 217{227.
[14] P. Boito, Y. Eidelman, and L. Gemignani, Implicit QR for companion-like pencils, Mathematics of Computation, 85 (2016), pp. 1753{1774.
[15] P. Boito, Y. Eidelman, and L. Gemignani, A real qz algorithm for structured companion pencils. https://arxiv.org/abs/1608.05395, 2016.
[16] P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg, Implicit QR with compression, Indagationes Mathematicae, 23 (2012), pp. 733{761.
[17] A. Bottcher and M. Halwass, Wiener{Hopf and spectral factorization of real polynomials by Newton's method, Linear Algebra and its Applications, 438 (2013), pp. 4760{4805.
[18] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for companion matrices, Operator Theory: Advances and Applications, 179 (2007), pp. 111{143.
[19] F. de Teran, F. M. Dopico, J. Perez, and a. a. check, Backward stability of polynomial root- nding using edler companion matrices, IMA Journal of Numerical Analysis, (2014).
[20] S. Delvaux, K. Frederix, and M. Van Barel, An algorithm for computing the eigenvalues of block companion matrices, Numerical Algorithms, 62 (2012), pp. 261{287.
[21] B. Eastman, I.-J. Kim, B. Shader, and K. Vander Meulen, Companion matrix patterns, Linear Algebra and its Applications, 463 (2014), pp. 255{272.
[22] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Mathematics of Computation, 64 (1995), pp. 763{776.
[23] Y. Eidelman, I. C. Gohberg, and I. Haimovici, Separable Type Representations of Matrices and Fast Algorithms { Volume 2: Eigenvalue Method, no. 235 in Operator Theory: Advances and Applications, Springer Basel, 2013.
[24] M. Fiedler, A note on companion matrices, Linear Algebra and its Applications, 372 (2003), pp. 325{331.
[25] M. A. Jenkins and J. F. Traub, Principles for testing polynomial zero nding programs, ACM Transactions on Mathematical Software, 1 (1975), pp. 26{34.
[26] G. F. Jonsson and S. Vavasis, Solving polynomials with small leading coe cients, SIAM Journal on Matrix Analysis and Applications, 26 (2004), pp. 400{414.
[27] D. Kressner, Numerical methods for general and structured eigenvalue problems, vol. 46 of LNCSE, Springer, 2005.
[28] T. Mach and R. Vandebril, On de ations in extended QR algorithms, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 559{579.
[29] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 971{1004.
[30] J. M. McNamee, A bibliography on roots of polynomials, Journal of Computational and Applied Mathematics, 47 (1993), pp. 391{394.
[31] C. B. Moler, Cleve's corner: Roots - of polynomials, that is, The Mathworks Newsletter, 5 (1991), pp. 8{9.
[32] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM Journal on Numerical Analysis, 10 (1973), pp. 241{256.
[33] MPFUN - multiprecision software. http://www.netlib.org/mpfun/, 2005.
[34] G. W. Stewart, On the adjugate matrix, Linear Algebra and its Applications, 283 (1998), pp. 151{164.
[35] M. Van Barel, R. Vandebril, P. Van Dooren, and K. Frederix, Implicit double shift QR-algorithm for companion matrices, Numerische Mathematik, 116 (2010), pp. 177{212.
[36] P. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix: Computational aspects, Linear Algebra and its Applications, 50 (1983), pp. 545{579.
[37] R. Vandebril, Chasing bulges or rotations? A metamorphosis of the QR-algorithm, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 217{247.
[38] R. Vandebril and D. S. Watkins, An extension of the QZ algorithm beyond the Hessenbergupper triangular pencil, Electronic Transactions on Numerical Analysis, 40 (2012), pp. 17{ 35.
[39] , A generalization of the multishift QR algorithm, SIAM Journal on Matrix Analysis and Applications, 33 (2012), pp. 759{779.
[40] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, USA, 2007.
[41] , Fundamentals of Matrix Computations, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, third ed., 2010.
[42] P. Zhlobich, Di erential qd algorithm with shifts for rank-structured matrices, SIAM Journal on Matrix Analysis and Applications, 33 (2012).