2020
Journal article  Open Access

(So) Big Data and the transformation of the city

Andrienko G., Andrienko N., Boldrini C., Caldarelli G., Cintia P., Cresci S., Facchini A., Giannotti F., Gionis A., Guidotti R., Mathioudakis M., Muntean C. I., Pappalardo L., Pedreschi D., Pournaras E., Pratesi F., Tesconi M., Trasarti R.

SYSTEM  HM  SoBigData  URBAN METABOLISM  QA75  Modelli e Metodi Matematici  THINGS DATA  Computer Science Applications  Big data  Modeling and Simulation  ENERGY  INTERNET  Information Systems  NETWORKS  mining  Urban data science  PREDICTION  Computational Theory and Mathematics  Settore FIS/02 - Fisica Teorica  DEMAND  Mobility datasets  SOCIAL MEDIA  113 Computer and information sciences  Applied Mathematics  social media analysis 

The exponential increase in the availability of large-scale mobility data has fueled the vision of smart cities that will transform our lives. The truth is that we have just scratched the surface of the research challenges that should be tackled in order to make this vision a reality. Consequently, there is an increasing interest among different research communities (ranging from civil engineering to computer science) and industrial stakeholders in building knowledge discovery pipelines over such data sources. At the same time, this widespread data availability also raises privacy issues that must be considered by both industrial and academic stakeholders. In this paper, we provide a wide perspective on the role that big data have in reshaping cities. The paper covers the main aspects of urban data analytics, focusing on privacy issues, algorithms, applications and services, and georeferenced data from social media. In discussing these aspects, we leverage, as concrete examples and case studies of urban data science tools, the results obtained in the "City of Citizens" thematic area of the Horizon 2020 SoBigData initiative, which includes a virtual research environment with mobility datasets and urban analytics methods developed by several institutions around Europe. We conclude the paper outlining the main research challenges that urban data science has yet to address in order to help make the smart city vision a reality.

Source: International Journal of Data Science and Analytics (Print) 1 (2020). doi:10.1007/s41060-020-00207-3

Publisher: Springer


1. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. (CSUR) 21(4), 515-556 (1989)
2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439-450 (2000)
3. Andrienko, G., Andrienko, N., Bak, P., Kisilevich, S., Keim, D.: Analysis of community-contributed space- and time-referenced data (example of flickr and panoramio photos). In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 213-214 (2009a)
4. Andrienko, G., Andrienko, N., Bak, P., Kisilevich, S., Keim, D.: Analysis of community-contributed space- and time-referenced data by example of panoramio photos (2009b)
5. Andrienko, G., Andrienko, N., Mladenov, M., Mock, M., Poelitz, C.: Identifying place histories from activity traces with an eye to parameter impact. IEEE Trans. Vis. Comput. Graph. 18(5), 675- 688 (2012)
6. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement. Springer, Berlin (2013)
7. Andrienko, N., Andrienko, G., Fuchs, G., Rinzivillo, S., Betz, H.D.: Detection, tracking, and visualization of spatial event clusters for real time monitoring. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1-10 (2015)
8. Andrienko, N., Andrienko, G., Fuchs, G., Jankowski, P.: Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Inf. Vis. 15(2), 117-153 (2016)
9. Angulo, J., Fischer-Hübner, S., Wästlund, E., Pulls, T.: Towards usable privacy policy display and management. Inf. Manag. Comput. Secur. 20(1), 4-17 (2012)
10. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. SIGMOD Rec. 28(2), 49-60 (1999)
11. Asikis, T., Pournaras, E.: Optimization of privacy-utility tradeoffs under informational self-determination. arXiv preprint arXiv:1710.03186 (2017)
12. Avvenuti, M., Cresci, S., Del Vigna, F., Tesconi, M.: Impromptu crisis mapping to prioritize emergency response. Computer 49(5), 28-37 (2016a)
13. Avvenuti, M., Cresci, S., Marchetti, A., Meletti, C., Tesconi, M.: Predictability or early warning: using social media in modern emergency response. IEEE Internet Comput. 20(6), 4-6 (2016b)
14. Avvenuti, M., Cresci, S., Del Vigna, F., Fagni, T., Tesconi, M.: CrisMap: a big data crisis mapping system based on damage detection and geoparsing. Inf. Syst. Front. 20(5), 993-1011 (2018a)
15. Avvenuti, M., Cresci, S., Nizzoli, L., Tesconi, M.: GSP (GeoSemantic-Parsing): geoparsing and geotagging with machine learning on top of linked data. In: European Semantic Web Conference, Springer, pp. 17-32 (2018b)
16. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, Hoboken (1974)
17. Batty, M.: The New Science of Cities. MIT Press, Cambridge (2013)
18. Bennati, S., Pournaras, E.: Privacy-enhancing aggregation of internet of things data via sensors grouping. Sustain. Cities Soc. 39, 387-400 (2018)
19. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J Mach Learn Res 3, 993-1022 (2003)
20. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., Pentland, A.: Once upon a crime: towards crime prediction from demographics and mobile data. In: Proceedings of the 16th International Conference on Multimodal Interaction, ACM, pp. 427-434 (2014)
21. Boldrini, C., Bruno, R.: Stackable vs autonomous cars for shared mobility systems: A preliminary performance evaluation. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 232-237 (2017)
22. Boldrini, C., Bruno, R., Conti, M.: Characterising demand and usage patterns in a large station-based car sharing system. In: The 2nd IEEE INFOCOM Workshop on Smart Cities and Urban Computing, IEEE, pp. 1-6 (2016)
23. Boldrini, C., Bruno, R., Laarabi, M.H.: Weak signals in the mobility landscape: car sharing in ten European cities. EPJ Data Sci. 8(1), 7 (2019)
24. Bonchi, F., Saygin, Y., Verykios, V.S., Atzori, M., GkoulalasDivanis, A., Kaya, S.V., Savas¸, E.: Privacy in spatiotemporal data mining. In: Mobility, Data Mining and Privacy, Springer, pp. 297- 333 (2008)
25. Bosch, H., Thom, D., Heimerl, F., Puettmann, E., Koch, S., Krueger, R., Woerner, M., Ertl, T.: Scatterblogs2: real-time monitoring of microblog messages through user-guided filtering. IEEE Trans. Vis. Comput. Graph. 19(12), 2022-2031 (2013)
26. Brilhante, I., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Where shall we go today?: Planning touristic tours with tripbuilder. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, ACM, New York, NY, USA, CIKM 2013, pp. 757-762 (2013)
27. Brilhante, I., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Tripbuilder: A tool for recommending sightseeing tours. In: Rijke, M., Kenter, T., Vries, A.P., Zhai, C.X., Jong, F., Radinsky, K., Hofmann, K. (eds.) Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 8416, Springer International Publishing, pp. 771-774 (2014)
28. Brilhante, I.R., de Macêdo, J.A.F., Nardini, F.M., Perego, R., Renso, C.: On planning sightseeing tours with tripbuilder. Inf. Process. Manag. 51(2), 1-15 (2015)
29. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485-509 (2004)
30. Can, Z., Demirbas, M.: A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Netw. 11(1), 596-610 (2013)
31. Carmichael, L., Stalla-Bourdillon, S., Staab, S.: Data mining and automated discrimination: a mixed legal/technical perspective. IEEE Intell. Syst. 31(6), 51-55 (2016)
32. Ceci, M., Appice, A., Malerba, D.: Time-slice density estimation for semantic-based tourist destination suggestion. In: ECAI, pp. 1107-1108 (2010)
33. Çelikten, E., Falher, G.L., Mathioudakis, M.: “What Is the City but the People?”: Exploring Urban Activity Using Social Web Traces. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pp. 167-170 (2016)
34. Çelikten, E., Falher, G.L., Mathioudakis, M.: Modeling urban behavior by mining geotagged social data. IEEE Trans. Big Data 3(2), 220-233 (2017)
35. Chae, J., Thom, D., Bosch, H., Jang, Y., Maciejewski, R., Ebert, D.S., Ertl, T.: Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 143-152 (2012)
36. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM international conference on Information and knowledge management, ACM, pp. 759-768 (2010)
37. Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining privacy for data mining. In: National Science Foundation Workshop on Next Generation Data Mining, Citeseer, vol. 1, p. 1 (2002)
38. Cresci, S.: Harnessing the social sensing revolution: challenges and opportunities. PhD dissertation, University of Pisa (2018)
39. Cresci, S., D'Errico, A., Gazzé, D., Duca, A.L., Marchetti, A., Tesconi, M.: Towards a DBpedia of tourism: The case of TourPedia. In: International Semantic Web Conference (Posters & Demos), pp. 129-132 (2014)
40. Dagar, M., Mahajan, S.: Data aggregation in wireless sensor network: a survey. Int. J. Inf. Comput. Technol. 3(3), 167-174 (2013)
41. Decker, E.H., Elliott, S., Smith, F.A., Blake, D.R., Rowland, F.S.: Energy and material flow through the urban ecosystem. Annu. Rev. Energy Environ. 25, 685-740 (2000)
42. Dunbar, R.I., Arnaboldi, V., Conti, M., Passarella, A.: The structure of online social networks mirrors those in the offline world. Social Netw. 43, 39-47 (2015)
43. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226-231 (1996)
44. Facchini, A.: Distributed energy resources: planning for the future. Nat. Energy 2, 17129 (2017)
45. Facchini, A., Kennedy, C., Stewart, I., Mele, R.: The energy metabolism of megacities. Appl. Energy 186, 86-95 (2017)
46. Fialová, E.: Data portability and informational self-determination. Masaryk UJL Technol. 8, 45 (2014)
47. Giannotti, F., Pedreschi, D.: Mobility, Data Mining and Privacy Geographic Knowledge Discovery. Springer, Berlin (2008)
48. Giannotti, F., Pappalardo, L., Pedreschi, D., Wang, D.: A complexity science perspective on human mobility. In: Mobility Data: Modeling, Management, and Understanding, Cambridge University Press, pp. 297-314 (2013)
49. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779 (2008)
50. Grossi, V., Rapisarda, B., Giannotti, F., Pedreschi, D.: Data science at sobigdata: the european research infrastructure for social mining and big data analytics. Int. J. Data Sci. Anal. 6(3), 205-216 (2018)
51. Guidotti, R.: Personal Data Analytics: Capturing Human Behavior to Improve Self-Awareness and Personal Services through Individual and Collective Knowledge. PhD thesis, University of Pisa (2017)
52. Guidotti, R., Trasarti, R., Nanni, M.: TOSCA: two-steps clustering algorithm for personal locations detection. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, p. 38 (2015)
53. Guidotti, R., Trasarti, R., Nanni, M., Giannotti, F., Pedreschi, D.: There's a path for everyone: A data-driven personal model reproducing mobility agendas. In: Data Science and Advanced Analytics (DSAA), 2017 IEEE International Conference on, IEEE, pp. 303-312 (2017)
54. Guidotti, R., Gabrielli, L., Monreale, A., Pedreschi, D., Giannotti, F.: Discovering temporal regularities in retail customers' shopping behavior. EPJ Data Sci. 7(1), 6 (2018)
55. Hattori, M., Hirano, T., Matsuda, N., Shimizu, R., Wang, Y.: Privacy-utility tradeoff for applications using energy disaggregation of smart-meter data. In: Australasian Conference on Information Security and Privacy, Springer, pp. 214-234 (2017)
56. Helbing, D.: Globally networked risks and how to respond. Nature 497(7447), 51 (2013)
57. Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. IJBIC 10(2), 69-78 (2017)
58. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Operations Research Proceedings 2012, Springer, pp. 297-302 (2014)
59. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: First International Conference on Security and Privacy for Emerging Areas in Communications Networks, 2005. SecureComm 2005. IEEE, pp. 194-205 (2005)
60. Hossein, S., Louise, Å., David, L., Anders, N., Nils, B.: Implementing smart urban metabolism in the Stockholm royal seaport: smart city SRS. J. Ind. Ecol. 19(5), 917-929 (2015)
61. Ibrahim, M., El-Zaart, A., Adams, C.: Smart sustainable cities: A new perspective on transformation, roadmap, and framework concepts. In: The Fifth International Conference on Smart Cities, Systems, Devices and Technologies (includes URBAN COMPUTING 2016), IARIA, pp. 8-14 (2016)
62. Jankowski, P., Andrienko, N., Andrienko, G., Kisilevich, S.: Discovering landmark preferences and movement patterns from photo postings. Trans. GIS 14(6), 833-852 (2010)
63. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. In: IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008. IEEE, pp. 70-79 (2008)
64. Jiang, S., Ferreira, J., González, M.C.: Clustering daily patterns of human activities in the city. Data Min. Knowl. Discov. 25(3), 478-510 (2012)
65. Kandappu, T., Misra, A., Cheng, S.F., Tandriansyah, R., Lau, H.C.: Obfuscation at-source: privacy in context-aware mobile crowd-sourcing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 16 (2018)
66. Keim, E.D., Kohlhammer, J., Ellis, G.: Mastering the information age: solving problems with visual analytics, eurographics association (2010)
67. Kennedy, C., Hoornweg, D.: Mainstreaming urban metabolism. J. Ind. Ecol. 16(6), 780-782 (2012)
68. Kennedy, C., Cuddihy, J., Engel-Yan, J.: The changing metabolism of cities. J. Ind. Ecol. 11(2), 43-59 (2007)
69. Kennedy, C., Stewart, I., Ibrahim, N., Facchini, A., Mele, R.: Developing a multi-layered indicator set for urban metabolism studies in megacities. Ecol. Indic. 47, 7-15 (2014)
70. Kennedy, C., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., Uda, M., Kansal, A., Chiu, A., Kim, K.G., Dubeux, C., La Rovere, E., Cunha, B., Pincetl, S., Keirstead, J., Barles, S., Pusaka, S., Gunawan, J., Adegbile, M., Nazariha, M., Hoque, S., Marcotullio, P., Otharán, F., Genena, T., Ibrahim, N., Farooqui, R., Cervantes, G., Sahin, A.: Energy and material flows of megacities. Proc. Natl. Acad. Sci. USA 112(19), 5985-5990 (2015)
71. Kennedy, C., Stewart, I.D., Facchini, A., Mele, R.: The role of utilities in developing low carbon, electric megacities. Energy Policy 106, 122-128 (2017)
72. Kennedy, C., Stewart, I.D., Westphal, M.I., Facchini, A., Mele, R.: Keeping global climate change within 1.5C through net negative electric cities. Curr. Opin. Environ. Sustain. 30, 18-25 (2018)
73. Kortum, K.: Driving smart: Carsharing mode splits and trip frequencies. In: Transportation Research Board 93rd Annual Meeting, 14-4009 (2014)
74. Krumm, J., Horvitz, E.: Predestination: inferring destinations from partial trajectories. In: International Conference on Ubiquitous Computing, Springer, pp. 243-260 (2006)
75. Leetaru, K., Schrodt, P.A.: Gdelt: Global data on events, location, and tone, 1979-2012. In: ISA Annual Convention, Citeseer, vol. 2, pp. 1-49 (2013)
76. Méneroux, Y., Le Guilcher, A., Saint Pierre, G., Hamed, M.G., Mustière, S., Orfila, O.: Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning. Int. J. Data Sci. Anal. 1-19 (2019)
77. Middleton, S.E., Middleton, L., Modafferi, S.: Real-time crisis mapping of natural disasters using social media. IEEE Intell. Syst. 29(2), 9-17 (2013)
78. Morzy, M.: Prediction of moving object location based on frequent trajectories. In: International Symposium on Computer and Information Sciences, Springer, pp. 583-592 (2006)
79. Pappalardo, L., Simini, F.: Data-driven generation of spatiotemporal routines in human mobility. Data Min. Knowl. Discov. 32(3), 787-829 (2018)
80. Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., Barabási, A.L.: Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166 (2015)
81. Pappalardo, L., Rinzivillo, S., Simini, F.: Human mobility modelling: Exploration and preferential return meet the gravity model. Procedia Computer Science 83:934-939. The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops (2016)
82. Pappalardo, L., Simini, F., Barlacchi, G., Pellungrini, R.: scikitmobility: a Python library for the analysis, generation and risk assessment of mobility data. arXiv preprint arXiv:1907.07062 (2019)
83. Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estimation of the number of clusters. In: Icml, vol. 1, pp. 727-734 (2000)
84. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: Fast estimation of privacy risk in human mobility data. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) Computer Safety, Reliability, and Security, pp. 415-426. Springer, Cham (2017)
85. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: A data mining approach to assess privacy risk in human mobility data. ACM Trans. Intell. Syst. Technol. 9(3), 31 (2018)
86. Pentland, A.: Reality mining of mobile communications: toward a new deal on data. Glob. Inf. Technol. Rep. 2008-2009, 1981 (2009)
87. Pincetl, S., Bunje, P., Holmes, T.: An expanded urban metabolism method: toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 107(3), 193-202 (2012)
88. Pournaras, E.: Proof of witness presence: blockchain consensus for augmented democracy in smart cities. arXiv preprint arXiv:1907.00498 (2019)
89. Pournaras, E., Nikolic´, J.: On-demand self-adaptive data analytics in large-scale decentralized networks. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), IEEE, pp. 1-10 (2017a)
90. Pournaras, E., Nikolic´, J.: Self-corrective dynamic networks via decentralized reverse computations. In: 2017 IEEE International Conference on Autonomic Computing (ICAC), IEEE, pp. 11-20 (2017b)
91. Pournaras, E., Vasirani, M., Kooij, R.E., Aberer, K.: Decentralized planning of energy demand for the management of robustness and discomfort. IEEE Trans. Ind. Inform. 10(4), 2280-2289 (2014a)
92. Pournaras, E., Vasirani, M., Kooij, R.E., Aberer, K.: Measuring and controlling unfairness in decentralized planning of energy demand. In: 2014 IEEE International on Energy Conference (ENERGYCON), IEEE, pp. 1255-1262 (2014b)
93. Pournaras, E., Nikolic, J., Velásquez, P., Trovati, M., Bessis, N., Helbing, D.: Self-regulatory information sharing in participatory social sensing. EPJ Data Sci. 5(1), 14 (2016)
94. Pournaras, E., Nikolic, J., Omerzel, A., Helbing, D.: Engineering democratization in internet of things data analytics. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), IEEE, pp. 994-1003 (2017a)
95. Pournaras, E., Yao, M., Helbing, D.: Self-regulating supplydemand systems. Future Gener. Comput. Syst. 76, 73-91 (2017b)
96. Pournaras, E., Pilgerstorfer, P., Asikis, T.: Decentralized collective learning for self-managed sharing economies. ACM Trans. Auton. Adapt. Syst. 13(2), 1-33 (2018)
97. Pournaras, E., Gaere, E., Kunz, R., Ghulam, A.N.: Democratizing data analytics: crowd-sourcing decentralized collective measurements. In: 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS* W), IEEE, pp. 265-266 (2019a)
98. Pournaras, E., Jung, S., Yadhunathan, S., Zhang, H., Fang, X.: Socio-technical smart grid optimization via decentralized charge control of electric vehicles. Appl. Soft Comput. 82, 105573 (2019b)
99. Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara, T.: PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems. Trans. Data Priv. 11(2), 139-167 (2018)
100. Rinzivillo, S., Gabrielli, L., Nanni, M., Pappalardo, L., Pedreschi, D., Giannotti, F.: The purpose of motion: Learning activities from individual mobility networks. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), IEEE, pp. 312-318 (2014)
101. Scala, A., D'Agostino, G.: Networks of networks: the last frontier of complexity. Springer, Berlin (2014)
102. Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell, A.T.: Nextplace: a spatio-temporal prediction framework for pervasive systems. In: International Conference on Pervasive Computing, Springer, pp. 152-169 (2011)
103. Schwieger, B., Victorero-Solares, P., Brook, D.: Global carsharing operators report 2015. Technical Report, Team Red (2015)
104. Shaheen, S., Cohen, A.: Mobility and the Sharing Economy: Impacts Synopsis-Spring 2015. Technical Report, Transportation Sustainability Research Center, University of California, Berkeley (2015)
105. Shahrokni, H., Lazarevic, D., Brandt, N.: Smart urban metabolism: towards a real-time understanding of the energy and material flows of a city and its citizens. J. Urban Technol. 22(1), 65-86 (2015)
106. Sibson, R.: Slink: an optimally efficient algorithm for the singlelink cluster method. Comput. J. 16(1), 30-34 (1973)
107. Spinsanti, L., Berlingerio, M., Pappalardo, L.: Mobility and geosocial networks. In: Mobility Data: Modeling, Management, and Understanding, Cambridge University Press, pp. 315-333 (2013)
108. Stewart, I.D., Kennedy, C.A., Facchini, A., Mele, R.: The electric city as a solution to sustainable urban development. J. Urban Technol. 25(1), 3-20 (2018)
109. Thom, D., Jankowski, P., Fuchs, G., Ertl, T., Bosch, H., Andrienko, N., Andrienko, G.: Thematic patterns in georeferenced tweets through space-time visual analytics. Comput. Sci. Eng. 15, 72-82 (2013)
110. Tosi, D.: Cell phone big data to compute mobility scenarios for future smart cities. Int. J. Data Sci. Anal. 4(4), 265-284 (2017)
111. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp. 1190-1198 (2011)
112. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: MyWay: location prediction via mobility profiling. Inf. Syst. 64, 350-367 (2017)
113. Wan, J., Liu, J., Shao, Z., Vasilakos, A.V., Imran, M., Zhou, K.: Mobile crowd sensing for traffic prediction in internet of vehicles. Sensors 16(1), 88 (2016)
114. Weikl, S., Bogenberger, K.: Relocation strategies and algorithms for free-floating car sharing systems. Intell. Transp. Syst. Mag. IEEE 5(4), 100-111 (2013)
115. Winter, J.: Algorithmic discrimination: big data analytics and the future of the internet. In: The Future Internet, Springer, pp. 125- 140 (2015)
116. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38 (2014)
117. Zhong, C., Batty, M., Manley, E., Wang, J., Wang, Z., Chen, F., Schmitt, G.: Variability in regularity: mining temporal mobility patterns in london, singapore and beijing using smart-card data. PLoS One 11(2), e0149222 (2016)

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:424949,
	title = {(So) Big Data and the transformation of the city},
	author = {Andrienko G. and Andrienko N. and Boldrini C. and Caldarelli G. and Cintia P. and Cresci S. and Facchini A. and Giannotti F. and Gionis A. and Guidotti R. and Mathioudakis M. and Muntean C. I. and Pappalardo L. and Pedreschi D. and Pournaras E. and Pratesi F. and Tesconi M. and Trasarti R.},
	publisher = {Springer},
	doi = {10.1007/s41060-020-00207-3},
	journal = {International Journal of Data Science and Analytics (Print)},
	volume = {1},
	year = {2020}
}

SoBigData
SoBigData Research Infrastructure


OpenAIRE