1. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. (CSUR) 21(4), 515-556 (1989)
2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439-450 (2000)
3. Andrienko, G., Andrienko, N., Bak, P., Kisilevich, S., Keim, D.: Analysis of community-contributed space- and time-referenced data (example of flickr and panoramio photos). In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 213-214 (2009a)
4. Andrienko, G., Andrienko, N., Bak, P., Kisilevich, S., Keim, D.: Analysis of community-contributed space- and time-referenced data by example of panoramio photos (2009b)
5. Andrienko, G., Andrienko, N., Mladenov, M., Mock, M., Poelitz, C.: Identifying place histories from activity traces with an eye to parameter impact. IEEE Trans. Vis. Comput. Graph. 18(5), 675- 688 (2012)
6. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement. Springer, Berlin (2013)
7. Andrienko, N., Andrienko, G., Fuchs, G., Rinzivillo, S., Betz, H.D.: Detection, tracking, and visualization of spatial event clusters for real time monitoring. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1-10 (2015)
8. Andrienko, N., Andrienko, G., Fuchs, G., Jankowski, P.: Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Inf. Vis. 15(2), 117-153 (2016)
9. Angulo, J., Fischer-Hübner, S., Wästlund, E., Pulls, T.: Towards usable privacy policy display and management. Inf. Manag. Comput. Secur. 20(1), 4-17 (2012)
10. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. SIGMOD Rec. 28(2), 49-60 (1999)
11. Asikis, T., Pournaras, E.: Optimization of privacy-utility tradeoffs under informational self-determination. arXiv preprint arXiv:1710.03186 (2017)
12. Avvenuti, M., Cresci, S., Del Vigna, F., Tesconi, M.: Impromptu crisis mapping to prioritize emergency response. Computer 49(5), 28-37 (2016a)
13. Avvenuti, M., Cresci, S., Marchetti, A., Meletti, C., Tesconi, M.: Predictability or early warning: using social media in modern emergency response. IEEE Internet Comput. 20(6), 4-6 (2016b)
14. Avvenuti, M., Cresci, S., Del Vigna, F., Fagni, T., Tesconi, M.: CrisMap: a big data crisis mapping system based on damage detection and geoparsing. Inf. Syst. Front. 20(5), 993-1011 (2018a)
15. Avvenuti, M., Cresci, S., Nizzoli, L., Tesconi, M.: GSP (GeoSemantic-Parsing): geoparsing and geotagging with machine learning on top of linked data. In: European Semantic Web Conference, Springer, pp. 17-32 (2018b)
16. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, Hoboken (1974)
17. Batty, M.: The New Science of Cities. MIT Press, Cambridge (2013)
18. Bennati, S., Pournaras, E.: Privacy-enhancing aggregation of internet of things data via sensors grouping. Sustain. Cities Soc. 39, 387-400 (2018)
19. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J Mach Learn Res 3, 993-1022 (2003)
20. Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., Pentland, A.: Once upon a crime: towards crime prediction from demographics and mobile data. In: Proceedings of the 16th International Conference on Multimodal Interaction, ACM, pp. 427-434 (2014)
21. Boldrini, C., Bruno, R.: Stackable vs autonomous cars for shared mobility systems: A preliminary performance evaluation. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 232-237 (2017)
22. Boldrini, C., Bruno, R., Conti, M.: Characterising demand and usage patterns in a large station-based car sharing system. In: The 2nd IEEE INFOCOM Workshop on Smart Cities and Urban Computing, IEEE, pp. 1-6 (2016)
23. Boldrini, C., Bruno, R., Laarabi, M.H.: Weak signals in the mobility landscape: car sharing in ten European cities. EPJ Data Sci. 8(1), 7 (2019)
24. Bonchi, F., Saygin, Y., Verykios, V.S., Atzori, M., GkoulalasDivanis, A., Kaya, S.V., Savas¸, E.: Privacy in spatiotemporal data mining. In: Mobility, Data Mining and Privacy, Springer, pp. 297- 333 (2008)
25. Bosch, H., Thom, D., Heimerl, F., Puettmann, E., Koch, S., Krueger, R., Woerner, M., Ertl, T.: Scatterblogs2: real-time monitoring of microblog messages through user-guided filtering. IEEE Trans. Vis. Comput. Graph. 19(12), 2022-2031 (2013)
26. Brilhante, I., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Where shall we go today?: Planning touristic tours with tripbuilder. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management, ACM, New York, NY, USA, CIKM 2013, pp. 757-762 (2013)
27. Brilhante, I., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Tripbuilder: A tool for recommending sightseeing tours. In: Rijke, M., Kenter, T., Vries, A.P., Zhai, C.X., Jong, F., Radinsky, K., Hofmann, K. (eds.) Advances in Information Retrieval, Lecture Notes in Computer Science, vol. 8416, Springer International Publishing, pp. 771-774 (2014)
28. Brilhante, I.R., de Macêdo, J.A.F., Nardini, F.M., Perego, R., Renso, C.: On planning sightseeing tours with tripbuilder. Inf. Process. Manag. 51(2), 1-15 (2015)
29. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485-509 (2004)
30. Can, Z., Demirbas, M.: A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Netw. 11(1), 596-610 (2013)
31. Carmichael, L., Stalla-Bourdillon, S., Staab, S.: Data mining and automated discrimination: a mixed legal/technical perspective. IEEE Intell. Syst. 31(6), 51-55 (2016)
32. Ceci, M., Appice, A., Malerba, D.: Time-slice density estimation for semantic-based tourist destination suggestion. In: ECAI, pp. 1107-1108 (2010)
33. Çelikten, E., Falher, G.L., Mathioudakis, M.: “What Is the City but the People?”: Exploring Urban Activity Using Social Web Traces. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pp. 167-170 (2016)
34. Çelikten, E., Falher, G.L., Mathioudakis, M.: Modeling urban behavior by mining geotagged social data. IEEE Trans. Big Data 3(2), 220-233 (2017)
35. Chae, J., Thom, D., Bosch, H., Jang, Y., Maciejewski, R., Ebert, D.S., Ertl, T.: Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 143-152 (2012)
36. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM international conference on Information and knowledge management, ACM, pp. 759-768 (2010)
37. Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining privacy for data mining. In: National Science Foundation Workshop on Next Generation Data Mining, Citeseer, vol. 1, p. 1 (2002)
38. Cresci, S.: Harnessing the social sensing revolution: challenges and opportunities. PhD dissertation, University of Pisa (2018)
39. Cresci, S., D'Errico, A., Gazzé, D., Duca, A.L., Marchetti, A., Tesconi, M.: Towards a DBpedia of tourism: The case of TourPedia. In: International Semantic Web Conference (Posters & Demos), pp. 129-132 (2014)
40. Dagar, M., Mahajan, S.: Data aggregation in wireless sensor network: a survey. Int. J. Inf. Comput. Technol. 3(3), 167-174 (2013)
41. Decker, E.H., Elliott, S., Smith, F.A., Blake, D.R., Rowland, F.S.: Energy and material flow through the urban ecosystem. Annu. Rev. Energy Environ. 25, 685-740 (2000)
42. Dunbar, R.I., Arnaboldi, V., Conti, M., Passarella, A.: The structure of online social networks mirrors those in the offline world. Social Netw. 43, 39-47 (2015)
43. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226-231 (1996)
44. Facchini, A.: Distributed energy resources: planning for the future. Nat. Energy 2, 17129 (2017)
45. Facchini, A., Kennedy, C., Stewart, I., Mele, R.: The energy metabolism of megacities. Appl. Energy 186, 86-95 (2017)
46. Fialová, E.: Data portability and informational self-determination. Masaryk UJL Technol. 8, 45 (2014)
47. Giannotti, F., Pedreschi, D.: Mobility, Data Mining and Privacy Geographic Knowledge Discovery. Springer, Berlin (2008)
48. Giannotti, F., Pappalardo, L., Pedreschi, D., Wang, D.: A complexity science perspective on human mobility. In: Mobility Data: Modeling, Management, and Understanding, Cambridge University Press, pp. 297-314 (2013)
49. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779 (2008)
50. Grossi, V., Rapisarda, B., Giannotti, F., Pedreschi, D.: Data science at sobigdata: the european research infrastructure for social mining and big data analytics. Int. J. Data Sci. Anal. 6(3), 205-216 (2018)
51. Guidotti, R.: Personal Data Analytics: Capturing Human Behavior to Improve Self-Awareness and Personal Services through Individual and Collective Knowledge. PhD thesis, University of Pisa (2017)
52. Guidotti, R., Trasarti, R., Nanni, M.: TOSCA: two-steps clustering algorithm for personal locations detection. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM, p. 38 (2015)
53. Guidotti, R., Trasarti, R., Nanni, M., Giannotti, F., Pedreschi, D.: There's a path for everyone: A data-driven personal model reproducing mobility agendas. In: Data Science and Advanced Analytics (DSAA), 2017 IEEE International Conference on, IEEE, pp. 303-312 (2017)
54. Guidotti, R., Gabrielli, L., Monreale, A., Pedreschi, D., Giannotti, F.: Discovering temporal regularities in retail customers' shopping behavior. EPJ Data Sci. 7(1), 6 (2018)
55. Hattori, M., Hirano, T., Matsuda, N., Shimizu, R., Wang, Y.: Privacy-utility tradeoff for applications using energy disaggregation of smart-meter data. In: Australasian Conference on Information Security and Privacy, Springer, pp. 214-234 (2017)
56. Helbing, D.: Globally networked risks and how to respond. Nature 497(7447), 51 (2013)
57. Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. IJBIC 10(2), 69-78 (2017)
58. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Operations Research Proceedings 2012, Springer, pp. 297-302 (2014)
59. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: First International Conference on Security and Privacy for Emerging Areas in Communications Networks, 2005. SecureComm 2005. IEEE, pp. 194-205 (2005)
60. Hossein, S., Louise, Å., David, L., Anders, N., Nils, B.: Implementing smart urban metabolism in the Stockholm royal seaport: smart city SRS. J. Ind. Ecol. 19(5), 917-929 (2015)
61. Ibrahim, M., El-Zaart, A., Adams, C.: Smart sustainable cities: A new perspective on transformation, roadmap, and framework concepts. In: The Fifth International Conference on Smart Cities, Systems, Devices and Technologies (includes URBAN COMPUTING 2016), IARIA, pp. 8-14 (2016)
62. Jankowski, P., Andrienko, N., Andrienko, G., Kisilevich, S.: Discovering landmark preferences and movement patterns from photo postings. Trans. GIS 14(6), 833-852 (2010)
63. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. In: IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008. IEEE, pp. 70-79 (2008)
64. Jiang, S., Ferreira, J., González, M.C.: Clustering daily patterns of human activities in the city. Data Min. Knowl. Discov. 25(3), 478-510 (2012)
65. Kandappu, T., Misra, A., Cheng, S.F., Tandriansyah, R., Lau, H.C.: Obfuscation at-source: privacy in context-aware mobile crowd-sourcing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 16 (2018)
66. Keim, E.D., Kohlhammer, J., Ellis, G.: Mastering the information age: solving problems with visual analytics, eurographics association (2010)
67. Kennedy, C., Hoornweg, D.: Mainstreaming urban metabolism. J. Ind. Ecol. 16(6), 780-782 (2012)
68. Kennedy, C., Cuddihy, J., Engel-Yan, J.: The changing metabolism of cities. J. Ind. Ecol. 11(2), 43-59 (2007)
69. Kennedy, C., Stewart, I., Ibrahim, N., Facchini, A., Mele, R.: Developing a multi-layered indicator set for urban metabolism studies in megacities. Ecol. Indic. 47, 7-15 (2014)
70. Kennedy, C., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., Uda, M., Kansal, A., Chiu, A., Kim, K.G., Dubeux, C., La Rovere, E., Cunha, B., Pincetl, S., Keirstead, J., Barles, S., Pusaka, S., Gunawan, J., Adegbile, M., Nazariha, M., Hoque, S., Marcotullio, P., Otharán, F., Genena, T., Ibrahim, N., Farooqui, R., Cervantes, G., Sahin, A.: Energy and material flows of megacities. Proc. Natl. Acad. Sci. USA 112(19), 5985-5990 (2015)
71. Kennedy, C., Stewart, I.D., Facchini, A., Mele, R.: The role of utilities in developing low carbon, electric megacities. Energy Policy 106, 122-128 (2017)
72. Kennedy, C., Stewart, I.D., Westphal, M.I., Facchini, A., Mele, R.: Keeping global climate change within 1.5C through net negative electric cities. Curr. Opin. Environ. Sustain. 30, 18-25 (2018)
73. Kortum, K.: Driving smart: Carsharing mode splits and trip frequencies. In: Transportation Research Board 93rd Annual Meeting, 14-4009 (2014)
74. Krumm, J., Horvitz, E.: Predestination: inferring destinations from partial trajectories. In: International Conference on Ubiquitous Computing, Springer, pp. 243-260 (2006)
75. Leetaru, K., Schrodt, P.A.: Gdelt: Global data on events, location, and tone, 1979-2012. In: ISA Annual Convention, Citeseer, vol. 2, pp. 1-49 (2013)
76. Méneroux, Y., Le Guilcher, A., Saint Pierre, G., Hamed, M.G., Mustière, S., Orfila, O.: Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning. Int. J. Data Sci. Anal. 1-19 (2019)
77. Middleton, S.E., Middleton, L., Modafferi, S.: Real-time crisis mapping of natural disasters using social media. IEEE Intell. Syst. 29(2), 9-17 (2013)
78. Morzy, M.: Prediction of moving object location based on frequent trajectories. In: International Symposium on Computer and Information Sciences, Springer, pp. 583-592 (2006)
79. Pappalardo, L., Simini, F.: Data-driven generation of spatiotemporal routines in human mobility. Data Min. Knowl. Discov. 32(3), 787-829 (2018)
80. Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., Barabási, A.L.: Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166 (2015)
81. Pappalardo, L., Rinzivillo, S., Simini, F.: Human mobility modelling: Exploration and preferential return meet the gravity model. Procedia Computer Science 83:934-939. The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops (2016)
82. Pappalardo, L., Simini, F., Barlacchi, G., Pellungrini, R.: scikitmobility: a Python library for the analysis, generation and risk assessment of mobility data. arXiv preprint arXiv:1907.07062 (2019)
83. Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estimation of the number of clusters. In: Icml, vol. 1, pp. 727-734 (2000)
84. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: Fast estimation of privacy risk in human mobility data. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) Computer Safety, Reliability, and Security, pp. 415-426. Springer, Cham (2017)
85. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: A data mining approach to assess privacy risk in human mobility data. ACM Trans. Intell. Syst. Technol. 9(3), 31 (2018)
86. Pentland, A.: Reality mining of mobile communications: toward a new deal on data. Glob. Inf. Technol. Rep. 2008-2009, 1981 (2009)
87. Pincetl, S., Bunje, P., Holmes, T.: An expanded urban metabolism method: toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 107(3), 193-202 (2012)
88. Pournaras, E.: Proof of witness presence: blockchain consensus for augmented democracy in smart cities. arXiv preprint arXiv:1907.00498 (2019)
89. Pournaras, E., Nikolic´, J.: On-demand self-adaptive data analytics in large-scale decentralized networks. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), IEEE, pp. 1-10 (2017a)
90. Pournaras, E., Nikolic´, J.: Self-corrective dynamic networks via decentralized reverse computations. In: 2017 IEEE International Conference on Autonomic Computing (ICAC), IEEE, pp. 11-20 (2017b)
91. Pournaras, E., Vasirani, M., Kooij, R.E., Aberer, K.: Decentralized planning of energy demand for the management of robustness and discomfort. IEEE Trans. Ind. Inform. 10(4), 2280-2289 (2014a)
92. Pournaras, E., Vasirani, M., Kooij, R.E., Aberer, K.: Measuring and controlling unfairness in decentralized planning of energy demand. In: 2014 IEEE International on Energy Conference (ENERGYCON), IEEE, pp. 1255-1262 (2014b)
93. Pournaras, E., Nikolic, J., Velásquez, P., Trovati, M., Bessis, N., Helbing, D.: Self-regulatory information sharing in participatory social sensing. EPJ Data Sci. 5(1), 14 (2016)
94. Pournaras, E., Nikolic, J., Omerzel, A., Helbing, D.: Engineering democratization in internet of things data analytics. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), IEEE, pp. 994-1003 (2017a)
95. Pournaras, E., Yao, M., Helbing, D.: Self-regulating supplydemand systems. Future Gener. Comput. Syst. 76, 73-91 (2017b)
96. Pournaras, E., Pilgerstorfer, P., Asikis, T.: Decentralized collective learning for self-managed sharing economies. ACM Trans. Auton. Adapt. Syst. 13(2), 1-33 (2018)
97. Pournaras, E., Gaere, E., Kunz, R., Ghulam, A.N.: Democratizing data analytics: crowd-sourcing decentralized collective measurements. In: 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS* W), IEEE, pp. 265-266 (2019a)
98. Pournaras, E., Jung, S., Yadhunathan, S., Zhang, H., Fang, X.: Socio-technical smart grid optimization via decentralized charge control of electric vehicles. Appl. Soft Comput. 82, 105573 (2019b)
99. Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara, T.: PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems. Trans. Data Priv. 11(2), 139-167 (2018)
100. Rinzivillo, S., Gabrielli, L., Nanni, M., Pappalardo, L., Pedreschi, D., Giannotti, F.: The purpose of motion: Learning activities from individual mobility networks. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), IEEE, pp. 312-318 (2014)
101. Scala, A., D'Agostino, G.: Networks of networks: the last frontier of complexity. Springer, Berlin (2014)
102. Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell, A.T.: Nextplace: a spatio-temporal prediction framework for pervasive systems. In: International Conference on Pervasive Computing, Springer, pp. 152-169 (2011)
103. Schwieger, B., Victorero-Solares, P., Brook, D.: Global carsharing operators report 2015. Technical Report, Team Red (2015)
104. Shaheen, S., Cohen, A.: Mobility and the Sharing Economy: Impacts Synopsis-Spring 2015. Technical Report, Transportation Sustainability Research Center, University of California, Berkeley (2015)
105. Shahrokni, H., Lazarevic, D., Brandt, N.: Smart urban metabolism: towards a real-time understanding of the energy and material flows of a city and its citizens. J. Urban Technol. 22(1), 65-86 (2015)
106. Sibson, R.: Slink: an optimally efficient algorithm for the singlelink cluster method. Comput. J. 16(1), 30-34 (1973)
107. Spinsanti, L., Berlingerio, M., Pappalardo, L.: Mobility and geosocial networks. In: Mobility Data: Modeling, Management, and Understanding, Cambridge University Press, pp. 315-333 (2013)
108. Stewart, I.D., Kennedy, C.A., Facchini, A., Mele, R.: The electric city as a solution to sustainable urban development. J. Urban Technol. 25(1), 3-20 (2018)
109. Thom, D., Jankowski, P., Fuchs, G., Ertl, T., Bosch, H., Andrienko, N., Andrienko, G.: Thematic patterns in georeferenced tweets through space-time visual analytics. Comput. Sci. Eng. 15, 72-82 (2013)
110. Tosi, D.: Cell phone big data to compute mobility scenarios for future smart cities. Int. J. Data Sci. Anal. 4(4), 265-284 (2017)
111. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp. 1190-1198 (2011)
112. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: MyWay: location prediction via mobility profiling. Inf. Syst. 64, 350-367 (2017)
113. Wan, J., Liu, J., Shao, Z., Vasilakos, A.V., Imran, M., Zhou, K.: Mobile crowd sensing for traffic prediction in internet of vehicles. Sensors 16(1), 88 (2016)
114. Weikl, S., Bogenberger, K.: Relocation strategies and algorithms for free-floating car sharing systems. Intell. Transp. Syst. Mag. IEEE 5(4), 100-111 (2013)
115. Winter, J.: Algorithmic discrimination: big data analytics and the future of the internet. In: The Future Internet, Springer, pp. 125- 140 (2015)
116. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38 (2014)
117. Zhong, C., Batty, M., Manley, E., Wang, J., Wang, Z., Chen, F., Schmitt, G.: Variability in regularity: mining temporal mobility patterns in london, singapore and beijing using smart-card data. PLoS One 11(2), e0149222 (2016)