[1] Bartels, R. H., Stewart, G. W., Sep. 1972. Solution of the Matrix Equation AX + XB = C [F4]. Commun. ACM 15 (9), 820{826.
[2] Beckermann, B., 2011. An error analysis for rational Galerkin projection applied to the Sylvester equation. SIAM Journal on Numerical Analysis 49 (6), 2430{2450.
[3] Benner, P., Kurschner, P., 2014. Computing real low-rank solutions of sylvester equations by the factored adi method. Computers & Mathematics with Applications 67 (9), 1656{1672.
[4] Benner, P., Mehrmann, V., Sima, V., Van Hu el, S., Varga, A., 1999. Slicot|a subroutine library in systems and control theory. In: Applied and computational control, signals, and circuits. Springer, pp. 499{539.
[5] Berljafa, M., Guttel, S., 2015. Generalized rational Krylov decompositions with an application to rational approximation. SIAM J. Matrix Anal. Appl. 36 (2), 894{916.
[6] Bhatia, R., Rosenthal, P., 1997. How and why to solve the operator equation AX XB = Y . Bulletin of the London Mathematical Society 29 (1), 1{21.
[7] Bini, D. A., Latouche, G., Meini, B., 2005. Numerical methods for structured Markov chains. Numerical Mathematics and Scienti c Computation. Oxford University Press, New York.
[8] Bini, D. A., Massei, S., Meini, B., Robol, L., 2018. On quadratic matrix equations with in nite size coe cients encountered in QBD stochastic processes. Numer. Linear Algebra Appl. 25 (6), e2128, 12.
[9] Bini, D. A., Massei, S., Robol, L., 2017. E cient cyclic reduction for quasibirth-death problems with rank structured blocks. Appl. Numer. Math. 116, 37{46.
[10] Bini, D. A., Massei, S., Robol, L., 2019. Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox. Numerical Algorithms 81 (2), 741{769.
[11] Bini, D. A., Meini, B., Meng, J., 2019. Solving quadratic matrix equations arising in random walks in the quarter plane. In preparation.
[12] Bottcher, A., Grudsky, S. M., 2005. Spectral properties of banded Toeplitz matrices. Vol. 96. SIAM.
[13] Gaaf, S. W., Jarlebring, E., 2017. The in nite bi-lanczos method for nonlinear eigenvalue problems. SIAM Journal on Scienti c Computing 39 (5), S898{S919.
[14] Gilles, M. A., Townsend, A., 2018. Continuous analogues of krylov methods for di erential operators. arXiv preprint arXiv:1803.11049.
[15] Golub, G., Nash, S., Van Loan, C., 1979. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Transactions on Automatic Control 24 (6), 909{913.
[16] Henrici, P., 1974. Applied and computational complex analysis. WileyInterscience [John Wiley & Sons], New York-London-Sydney, volume 1: Power series|integration|conformal mapping|location of zeros, Pure and Applied Mathematics.
[17] Kressner, D., Massei, S., Robol, L., 2019. Low-rank updates and a divideand-conquer method for linear matrix equations. SIAM Journal on Scienti c Computing 41 (2), A848{A876.
[18] Lancaster, P., 1970. Explicit solutions of linear matrix equations. SIAM review 12 (4), 544{566.
[19] Massei, S., Mazza, M., Robol, L., 2019. Fast solvers for 2D fractional di usion equations using rank structured matrices. to appear in SIAM Journal on Scienti c Computing.
[20] Massei, S., Palitta, D., Robol, L., 2018. Solving rank-structured Sylvester and Lyapunov equations. SIAM Journal on Matrix Analysis and Applications 39 (4), 1564{1590.
[21] Massei, S., Robol, L., 2019. Rational Krylov for Stieltjes matrix functions: convergence and pole selection. In preparation.
[22] Moret, I., Novati, P., 2019. Krylov subspace methods for functions of fractional di erential operators. Mathematics of Computation 88 (315), 293{ 312.
[23] Motyer, A. J., Taylor, P. G., 2006. Decay rates for quasi-birth-and-death processes with countably many phases and tridiagonal block generators. Advances in applied probability 38 (2), 522{544.
[24] Novati, P., 2017. Some properties of the Arnoldi-based methods for linear ill-posed problems. SIAM Journal on Numerical Analysis 55 (3), 1437{1455.
[25] Palitta, D., Simoncini, V., 2016. Matrix-equation-based strategies for convection{di usion equations. BIT Numerical Mathematics 56 (2), 751{ 776.
[26] Rosenblum, M., et al., 1956. On the operator equation BX Duke Mathematical Journal 23 (2), 263{269.