2023
Conference article  Open Access

VISIONE at Video Browser Showdown 2023

Amato G., Bolettieri P., Carrara F., Falchi F., Gennaro C., Messina N., Vadicamo L., Vairo C.

Video search  Information search and retrieval  Multi-modal retrieval  Content-based video retrieval  Surrogate text representation 

In this paper, we present the fourth release of VISIONE, a tool for fast and effective video search on a large-scale dataset. It includes several search functionalities like text search, object and color-based search, semantic and visual similarity search, and temporal search. VISIONE uses ad-hoc textual encoding for indexing and searching video content, and it exploits a full-text search engine as search backend. In this new version of the system, we introduced some changes both to the current search techniques and to the user interface.

Source: MMM 2023 - 29th International Conference on Multi Media Modeling, pp. 615–621, Bergen, Norway, 9-12/01/2023


Metrics



Back to previous page
BibTeX entry
@inproceedings{oai:it.cnr:prodotti:486130,
	title = {VISIONE at Video Browser Showdown 2023},
	author = {Amato G. and Bolettieri P. and Carrara F. and Falchi F. and Gennaro C. and Messina N. and Vadicamo L. and Vairo C.},
	doi = {10.1007/978-3-031-27077-2_48},
	booktitle = {MMM 2023 - 29th International Conference on Multi Media Modeling, pp. 615–621, Bergen, Norway, 9-12/01/2023},
	year = {2023}
}

AI4Media
A European Excellence Centre for Media, Society and Democracy


OpenAIRE