[1] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 942{973.
[2] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins, A note on companion pencils, Contemporary Mathematics, 658 (2016), pp. 91{101.
[3] P. Benner, V. Mehrmann, and H. Xu, Perturbation analysis for the eigenvalue problem of a formal product of matrices, BIT Numerical Mathematics, 42 (2002), pp. 1{43.
[4] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, and F. Tisseur, NLEVP: a collection of nonlinear eigenvalue problems, ACM Trans. Math. Software, 39 (2013), pp. 7:1{ 7:28.
[5] D. Bini and B. Meini, On the solution of a nonlinear matrix equation arising in queueing problems, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 906{926.
[6] D. A. Bini and V. Noferini, Solving polynomial eigenvalue problems by means of the Ehrlich{Aberth method, Linear Algebra and its Applications, 439 (2013), pp. 1130{1149.
[7] A. W. Bojanczyk, G. H. Golub, and P. Van Dooren, Periodic Schur decomposition: algorithms and applications, in San Diego'92, International Society for Optics and Photonics, 1992, pp. 31{42.
[9] S. Delvaux, K. Frederix, and M. Van Barel, An algorithm for computing the eigenvalues of block companion matrices, Numerical Algorithms, 62 (2012), pp. 261{287.
[10] F. M. Dopico, P. Lawrence, J. Perez, and P. Van Dooren, Block Kronecker linearizations of matrix polynomials and their backward errors, Tech. Rep. 2016.34, Manchester Institute for Mathematical Sciences School of Mathematics, The University of Manchester, 2016.
[11] C. Effenberger and D. Kressner, Chebyshev interpolation for nonlinear eigenvalue problems, BIT Numerical Mathematics, 52 (2012), pp. 933{951.
[12] Y. Eidelman, I. C. Gohberg, and I. Haimovici, Separable Type Representations of Matrices and Fast Algorithms { Volume 2: Eigenvalue Method, no. 235 in Operator Theory: Advances and Applications, Springer Basel, 2013.
[13] J. G. F. Francis, The QR Transformation a unitary analogue to the LR transformation{ Part 1, The Computer Journal, 4 (1961), pp. 265{271.
[14] , The QR Transformation{Part 2, The Computer Journal, 4 (1962), pp. 332{345.
[15] F. R. Gantmacher, The Theory of Matrices, Vol II, Chelsea, New York, 1974.
[16] I. Gohberg, P. Lancaster, and L. Rodman, Matrix polynomials, vol. 58, Siam, 1982.
[17] N. J. Higham, Accuracy and Stability of numerical algorithms, SIAM, 1996.
[18] N. J. Higham, D. S. Mackey, and F. Tisseur, The conditioning of linearizations of matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 1005{1028.
[19] P. Lancaster, Lambda-matrices and vibrating systems, Courier Corporation, 2002.
[20] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue problems: good vibrations from good linearizations, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 1029{1051.
[21] , Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 971{1004.
[22] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM Journal on Numerical Analysis, 10 (1973), pp. 241{256.
[23] L. Robol, Exploiting rank structures for the numerical treatment of matrix polynomials, PhD thesis, University of Pisa, Italy, 2015.
[24] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra and its Applications, 309 (2000).
[25] M. Van Barel, Designing rational lter functions for solving eigenvalue problems by contour integration, Linear Algebra and its Applications, 502 (2016), pp. 346{365.
[26] R. Vandebril, Chasing bulges or rotations? A metamorphosis of the QR-algorithm, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 217{247.
[27] R. Vandebril and D. S. Watkins, An extension of the QZ algorithm beyond the Hessenberg-upper triangular pencil, Electronic Transactions on Numerical Analysis, 40 (2012), pp. 17{35.
[28] D. S. Watkins, Product eigenvalue problems, SIAM Review, 47 (2005), pp. 3{40. , The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, USA, 2007.