Journal article  Open Access

Semantic segmentation of Benthic communities from ortho-mosaic maps

Pavoni G., Corsini M., Callieri M., Palma M., Scopigno R.

deep learning  corals  Underwater Monitoring  Semantic Segmentation  underwater  Ortho-mosaic Map  classification  Coral Reefs 

Visual sampling techniques represent a valuable resource for a rapid, non-invasive data acquisition for underwater monitoring purposes. Long-term monitoring projects usually requires the collection of large quantities of data, and the visual analysis of a human expert operator remains, in this context, a very time consuming task. It has been estimated that only the 1-2% of the acquired images are later analyzed by scientists (Beijbom et al., 2012). Strategies for the automatic recognition of benthic communities are required to effectively exploit all the information contained in visual data. Supervised learning methods, the most promising classification techniques in this field, are commonly affected by two recurring issues: the wide diversity of marine organism, and the small amount of labeled data. In this work, we discuss the advantages offered by the use of annotated high resolution ortho-mosaics of seabed to classify and segment the investigated specimens, and we suggest several strategies to obtain a considerable per-pixel classification performance although the use of a reduced training dataset composed by a single ortho-mosaic. The proposed methodology can be applied to a large number of different species, making the procedure of marine organism identification an highly adaptable task.

Source: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 42 (2019): 151–158. doi:10.5194/isprs-archives-XLII-2-W10-151-2019

Publisher: Copernicus GmbH (Copernicus Publications), Germania, Germania

100 Islands Challenge Team, 2019.
Project. http://100islandchallenge.org.
February 2019.
100 Islands Challenge Online; accessed 22 Alonso, I., Cambra, A., Muoz, A., Treibitz, T. and Murillo, A. C., 2017. Coral-segmentation: Training dense labeling models with sparse ground truth. In: ICCVW 2017, pp. 2874-2882.
Audebert, N., Le Saux, B. and Lefe`vre, S., 2017. Semantic segmentation of earth observation data using multimodal and multiscale deep networks. In: S.-H. Lai, V. Lepetit, K. Nishino and Y. Sato (eds), ACCV 2016, pp. 180-196.
Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G. and Kriegman, D., 2012. Automated annotation of coral reef survey images. In: CVPR2012, pp. 1170-1177.
Beijbom, O., Edmunds, P. J., Roelfsema, C., Smith, J., Kline, D. I., Neal, B. P., Dunlap, M. J., Moriarty, V., Fan, T.-Y., Tan, C.- J., Chan, S., Treibitz, T., Gamst, A., Mitchell, B. G. and Kriegman, D., 2015. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLOS ONE 10, pp. 1-22.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV.
Edwards, C., Eynaud, Y., Williams, G. J., Pedersen, N. E., Zgliczynski, B. J., Gleason, A. C. R., Smith, J. E. and Sandin, S., 2017. Large-area imaging reveals biologically driven nonrandom spatial patterns of corals at a remote reef. Coral Reefs 36, pp. 1291-1305.
Kendall, A., Badrinarayanan, V. and Cipolla, R., 2015. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. CoRR.
King, A., Bhandarkar, S. M. and Hopkinson, B. M., 2018. A comparison of deep learning methods for semantic segmentation of coral reef survey images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
Liu, Y., Minh Nguyen, D., Deligiannis, N., Ding, W. and Munteanu, A., 2017. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sensing.
Ma, L., Stueckler, J., Kerl, C. and Cremers, D., 2017. Multi-view deep learning for consistent semantic mapping with rgb-d cameras. In: IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada.
Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G. and Fisher, R. B., 2016. Automatic annotation of coral reefs using deep learning. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1-5.
Maninis, K.-K., Caelles, S., Pont-Tuset, J. and Van Gool, L., 2018. Deep extreme cut: From extreme points to object segmentation. In: Computer Vision and Pattern Recognition (CVPR).
Palma, M. A., Casado, M. R., Pantaleo, U. and Cerrano, C., 2017.
High resolution orthomosaics of african coral reefs: A tool for wide-scale benthic monitoring. Remote Sensing 9, pp. 705.
Pavoni, G., Corsini, M., Palma, M. and Scopigno, R., 2019. A validation tool for improving semantic segmentation of complex natural structures. In: Eurographics 2019 - Short Papers (in press).
Zuiderveld, K., 1994. Graphics gems iv. Academic Press Professional, Inc., San Diego, CA, USA, chapter Contrast Limited Adaptive Histogram Equalization, pp. 474-485.


Back to previous page
BibTeX entry
	title = {Semantic segmentation of Benthic communities from ortho-mosaic maps},
	author = {Pavoni G. and Corsini M. and Callieri M. and Palma M. and Scopigno R.},
	publisher = {Copernicus GmbH (Copernicus Publications), Germania, Germania},
	doi = {10.5194/isprs-archives-xlii-2-w10-151-2019},
	journal = {ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals)},
	volume = {42},
	pages = {151–158},
	year = {2019}

Green Bubbles RISE for sustainable diving