Journal article  Open Access

Dynamic characterization of progressively damaged segmental masonry arches with one settled support: experimental and numerical analyses

Masciotta M. G., Pellegrini D., Girardi M., Padovani C., Barontini A., Lourenço P. B., Brigante D., Fabbrocino G.

model updating  Masonry arch settlements  :Engenharia Civil [Engenharia e Tecnologia]  Modal analysis  dynamic behavior  Mechanics of Materials  linear perturbation  Dynamic behavior  modal analysis  Science & Technology  nonlinear elasticity  masonry arch settlements  Engenharia e Tecnologia::Engenharia Civil  Mechanical Engineering  Linear perturbation  Nonlinear elasticity  Model updating 

This paper aims to explore the dynamic behavior of a segmental masonry arch subjected to increasing horizontal displacements of one support. To this end, output-only dynamic identification techniques are first used to track the evolution of the dynamic features of the system under progressive damage scenarios and evaluate their sensitivity to settlement-induced cracks. Considerations on the structural response of the segmental arch up to failure are also included. Then, a numerical procedure coupling linear perturbation and modal analysis is applied to simulate the dynamic behavior of the arch over consecutive scenarios, taking into account the influence of the damage on the structure's dynamic properties in an automatic way. The combination of experimental and numerical analyses allows to fully investigate the dynamics of the cracked masonry arch and to shed light on relevant aspects about the effects of settlement-induced cracks on the modal blueprints of masonry arches.

Source: Frattura e Integrità Strutturale (2020). doi:10.3221/IGF-ESIS.51.31

Publisher: Università di Cassino, Cassino (FR) , Italia

[1] Levy, M. (2006). The Arch: Born in the Sewer, Raised to the Heavens, Nexus Network Journal. 8, pp. 7-12.
[2] Pelà, L., Aprile, A. and Benedetti, A. (2009) Seismic assessment of masonry arch bridges, Eng Struct. 31, pp. 1777- 1788. doi: 10.1016/j.engstruct.2009.02.012
[3] Gaetani, A., Lourenco, P.B., Monti, G., and Moroni, M. (2017). Shaking table tests and numerical analyses on a scaled dry-joint arch undergoing windowed sine pulses. Bull Earthquake Eng, 15, pp. 4939-4961.
[4] De Santis, S. and de Felice, G. (2014). A fibre beam-based approach for the evaluation of the seismic capacity of masonry arches. Earthq Eng Struct Dyn, 43, pp. 1661-1681. doi: 10.1002/eqe.2416
[5] Cavalagli, N., Gusella, V. and Severini, L. (2017). The safety of masonry arches with uncertain geometry. Comput Struct, 188, pp. 17-31.
[6] Sánchez-Aparicio, L.J. et al. (2019). Non-destructive means and methods for structural diagnosis of masonry arch bridges. Automation in Construction, 104, pp. 360-382.
[7] Conde, B. et al. (2017). Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Engineering Structures, 148, pp. 621-638.
[8] de Arteaga, I. and Morer, P. (2012). The effect of geometry on the structural capacity of masonry arch bridges. Constr Build Mater, 34, pp. 97-106.
[9] Conde, B., Díaz-Vilariño, L., Lagüela, S., and Arias, P. (2016). Structural analysis of Monforte de Lemos masonry arch bridge considering the influence of the geometry of the arches and fill material on the collapse load estimation. Constr Build Mater, 120, pp. 630-42.
[10] Severini, L., Cavalagli, N., DeJong, M. and Gusella, V. (2018). Dynamic response of masonry arch with geometrical irregularities subjected to a pulse-type ground motion. Nonlinear Dyn, 91(1), pp. 609-24.
[11] Milani, G. and Lourenço, P.B. (2012). 3D non-linear behavior of masonry arch bridges. Comput Struct, 110-111, pp. 133-150.
[12] Cavicchi, A. and Gambarotta, L. (2007). Lower bound limit analysis of masonry bridges including arch-fill interaction. Eng Struct, 29(11), pp. 3002-3014.
[13] Zampieri, P., Zanini, M., and Faleschini, F. (2016). Influence of damage on the seismic failure analysis of masonry arches. Constr Build Mater, 119, pp. 343-355.
[14] Zanaz, A., Yotte, S., Fouchal, F. and Chateauneuf, A. (2016). Efficient masonry vault inspection by monte carlo simulations: case of hidden defect. Case Stud Struct Eng, 5, pp. 1-12.
[15] Sarhosis, V., De Santis, S. and de Felice, G. (2016). A review of experimental investigations and assessment methods for masonry arch bridges, Structure and Infrastructure Engineering, 12(11), pp. 1439-1464.
[16] Ochsendorf, J.A. (2006). The masonry arch on spreading supports. Struct Eng, 84(2), pp. 29-35.
[17] Zampieri, P., Faleschini, F., Zanini, M.A. and Simoncello, N. (2018). Collapse mechanisms of masonry arches with settled springing, Eng Struct, 156, pp. 363-374.
[18] Zampieri, P., Cavalagli, N., Gusella, V. and Pellegrino, C. (2018). Collapse displacements of masonry arch with geometrical uncertainties on spreading supports, Comput Struct, 208, pp. 118-129.
[19] Galassi, S., Misseri, G., Rovero, L. and Tempesta, G. (2018). Failure modes prediction of masonry voussoir arches on moving supports, Engineering Structures, 173, pp. 706-717.
[20] Coccia, S., Di Carlo, F. and Rinaldi, Z. (2015). Collapse displacements for a mechanism of spreading-induced supports in a masonry arch. Int J Adv Struct Eng, 7(3), pp. 307-20.
[21] Alvandi, A., and Cremona, C. (2006). Assessment of vibration-based damage identification techniques. Journal of Sound and Vibration, 292, pp. 179-202.
[22] Farrar, C.R. and Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A, 365, pp. 303-315.
[23] Ramos, L.F., Marques, L., Lourenço, P.B., De Roeck, G., Campos-Costa, A. and Roque, J. (2010). Monitoring historical masonry structures with operational modal analysis: two case studies. Mechanical Systems and Signal Processing, 24(5), pp. 1291-1305.
[24] Masciotta, M.G., Ramos, L.F., Lourenço, P.B. and Vasta, M. (2017). Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model. Mechanical Systems and Signal Processing, 84, pp. 286-307.
[25] Masciotta, M.G., Ramos, L.F. and Lourenço, P.B. (2017). The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of Cultural Heritage, 27, pp. 36-47.
[26] Ubertini, F., Cavalagli, N., Kita, A. and Comanducci, G. (2018). Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bulletin of Earthquake Engineering, 16(2), pp. 775-801.
[27] Heyman, J. (1982). The Masonry Arch. Ellis Horwood Ltd.
[28] ARTeMIS Modal, Structural Vibration Solutions A/S (2018).
[29] Liu, M. and Gorman, D.G. (1995). Formulation of Rayleigh damping and its extensions. Computers and Structures, 57(2), pp. 277-285.
[30] Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: state-of-the-art and recent developments. ARCH 2007 - Proceeding of the 5th International Conference on Arch Bridges, pp. 13-28.
[31] Pineda, P. (2016). Collapse and upgrading mechanisms associated to the structural materials of a deteriorated masonry tower. Nonlinear assessment under different damage and loading levels. Eng. Fail. Anal. 63, pp. 72-93.
[32] Ramos, L.F., De Roeck, G., Lourenço, P.B. et al. (2010). Damage identification on arched masonry structures using ambient and random impact vibrations. Eng Struct, 32, pp. 146-162.
[33] Girardi, M. Padovani, C. and Pellegrini, D. (2015). The NOSA-ITACA code for the safety assessment of ancient constructions: a case study in Livorno. Advances in Engineering Software Journal, 89, pp. 64-76.
[34] Binante, V., Girardi, M., Padovani, C., Pasquinelli, G., Pellegrini, D., Porcelli, M., and Robol, L. NOSA-ITACA 1.1 ISTI-CNR, 2017-SW-013.
[35] Pellegrini, D., Girardi, M., Padovani, C. and Azzara, R.M. (2017). A new numerical procedure for assessing the dynamic behaviour of ancient of ancient masonry towers. In M. Papadrakakis, M. Fragiadakis (eds.) COMPDYN 2017 Computational Methods in Structural Dynamics and Earthquake Engineering, vol. 2, pp. 5045-5055, Rodhos.
[36] Girardi, M., Padovani, C. and Pellegrini, D. (2018). Modal analysis of masonry structures. Mathematics and Mechanics of Solids, SAGE Publications Ltd STM, First Published February 13.
[37] Del Piero, G. (1989). Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica, 24, pp. 150-162.
[38] Lucchesi, M., Padovani, C., Pasquinelli, G. and Zani, N. (2008). Masonry constructions: mechanical models and numerical applications. Lecture Notes in Applied and Computational Mechanics, Springer-Verlag.
[39] Porcelli, M., Binante, V., Girardi, M., Padovani., C. and Pasquinelli, G. (2015). A solution procedure for constrained eigenvalue problems and its application within the structural finite-element code NOSA-ITACA. Calcolo, 52(2), pp. 167-189.
[40] Girardi, M., Padovani, C., Pellegrini, D. and Robol, L. (2019). Model Updating Procedure to Enhance Structural Analysis in FE Code NOSA-ITACA. J. Perform. Constr. Facil, 33(4): 04019041.
[41] Binda, L., Roberti, G.M. and Tiraboschi, C. (1996). Problemi di misura dei parametri meccanici della muratura e dei suoi componenti. Atti del Convegno Nazionale La Meccanica delle Murature tra Teoria e Progetto, Messina.
[42] Narayanan, S.P. and Sirajuddin, M. (2013). Properties of Brick Masonry for FE modeling. American Journal of Engineering Research, 1, pp. 6-11.
[43] DeJong, M., De Lorenzis, L., Adams, S. and Ochsendorf, J. (2008). Rocking stability of masonry arches in seismic regions. Earthq Spectra, 24, pp. 847-865.
[44] Albuerne, A., Williams, M. and Lawson, V. (2013). Prediction of the failure mechanism of arches under base motion using DEM based on the NSCD method. Wiadomos´ci Konserw, 34, pp. 41-47.
[45] Pepi, C. et al. (2017). Dynamic characterization of a severely damaged historic masonry bridge. Procedia Engineering, 199, pp. 3398-3403.
[46] Pellegrini, D., Girardi, M., Lourenco, P.B., Masciotta, M.G., Mendes, N., Padovani, C. and Ramos, L.F. (2018). Modal analysis of historical masonry structures: linear perturbation and software benchmarking. Construction and Building Materials, 189, pp. 1232-1250.


Back to previous page
BibTeX entry
	title = {Dynamic characterization of progressively damaged segmental masonry arches with one settled support: experimental and numerical analyses},
	author = {Masciotta M. G. and Pellegrini D. and Girardi M. and Padovani C. and Barontini A. and Lourenço P. B. and Brigante D. and Fabbrocino G.},
	publisher = {Università di Cassino, Cassino (FR) , Italia},
	doi = {10.3221/igf-esis.51.31},
	journal = {Frattura e Integrità Strutturale},
	year = {2020}