[1] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. Pics: Parameter-free identification of cohesive subgroups in large attributed graphs. In SDM, pages 439-450. SIAM, 2012.
[2] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees of separation. In Proceedings of the 4th Annual ACM Web Science Conference, pages 33-42. ACM, 2012.
[3] A. Baroni and S. Ruggieri. Segregation discovery in a social network of companies. In IDA, pages 37-48. Springer, 2015.
[4] P. Boldi, M. Rosa, and S. Vigna. Hyperanf: Approximating the neighbourhood function of very large graphs on a budget. In WWW, pages 625-634. ACM, 2011.
[5] C. Bothorel, J. D. Cruz, M. Magnani, and B. Micenkov´a. Clustering attributed graphs: models, measures and methods. Network Science, 3(03):408-444, 2015.
[6] J. G. Bruhn. The sociology of community connections. Springer Science & Business Media, 2011.
[7] J. Cao, S. Wang, F. Qiao, H. Wang, F. Wang, and S. Y. Philip. User-guided large attributed graph clustering with multiple sparse annotations. In PAKDD, pages 127-138. Springer, 2016.
[8] M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl, 40(1):200-210, 2013.
[9] A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Phys rev E, 70(6):066111, 2004.
[10] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In PODS, pages 225-234. ACM, 2007.
[11] D. Combe, C. Largeron, E. Egyed-Zsigmond, and M. G´ery. Combining relations and text in scientific network clustering. In ASONAM, pages 1248-1253. IEEE, 2012.
[12] D. Combe, C. Largeron, M. G´ery, and E. Egyed-Zsigmond. Ilouvain: An attributed graph clustering method. In IDA, pages 181-192. Springer, 2015.
[13] M. Coscia, F. Giannotti, and D. Pedreschi. A classification for community discovery methods in complex networks. Statistical Analysis and Data Mining, 4(5):512-546, 2011.
[14] P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. A comparison R. Diestel. Graph theory. 2005. Grad. Texts in Math, 2005.
Y. Ding. Community detection: Topological vs. topical. Journal of Informetrics, 5(4):498-514, 2011.
[18] K.-C. Duong, C. Vrain, et al. A filtering algorithm for constrained clustering with within-cluster sum of dissimilarities criterion. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, pages 1060-1067. IEEE, 2013.
[19] S. Gu¨nnemann, B. Boden, and T. Seidl. Db-csc: a density-based approach for subspace clustering in graphs with feature vectors. In Machine Learning and Knowledge Discovery in Databases, pages 565-580. Springer, 2011.
[20] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman. Personalized recommendation of social software items based on social relations. In RecSys, pages 53- 60, New York, NY, USA, 2009. ACM.
[21] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., 3rd edition, 2011.
[22] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE T Pattern Anal, 24(7):881-892, 2002.
[23] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129-137, 1982.
[24] D. W. McMillan and D. M. Chavis. Sense of community: A definition and theory. J Community Psychol, 14(1):6-23, 1986.
[25] I. B. Mohamad and D. Usman. Standardization and its effects on k-means clustering algorithm. Res J Appl Sci Eng Technol, 6(17):3299-3303, 2013.
[26] A. Papadopoulos, D. Rafailidis, G. Pallis, and M. D. Dikaiakos. Clustering attributed multi-graphs with information ranking. In DEXA, pages 432-446. Springer, 2015.
[27] B. Perozzi, L. Akoglu, P. Iglesias S´anchez, and E. Mu¨ller. Focused clustering and outlier detection in large attributed graphs. In ACM SIGKDD, pages 1346-1355. ACM, 2014.
[28] M. H. Protter and C. B. Morrey. College calculus with analytic geometry. Addison-Wesley, 1977.
[29] P. I. Sa´nchez, E. Mu¨ller, K. B¨ohm, A. Kappes, T. Hartmann, and D. Wagner. Efficient algorithms for a robust modularitydriven clustering of attributed graphs. In SDM, volume 15. SIAM, 2015.
[30] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503, 2011.
[31] N. Villa-Vialaneix, M. Olteanu, and C. Cierco-Ayrolles. Carte auto-organisatrice pour graphes ´etiquet´es. In Atelier Fouilles de Grands Graphes (FGG)-EGC, pages Article-num´ero, 2013.
[32] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.
[33] D. J. Watts. Networks, dynamics, and the small-world phenomenon 1. Am J Sociol, 105(2):493-527, 1999.
[34] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A modelbased approach to attributed graph clustering. In SIGMOD, pages 505-516. ACM, 2012.
[35] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. Gbagc: A general bayesian framework for attributed graph clustering. TKDD, 9(1):5, 2014.
[36] J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with node attributes. In ICDM, pages 1151-1156. IEEE, 2013.
[37] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang. Bipartite network projection and personal recommendation. Phys Rev E, 76(4):046115, 2007.