[1] N. Bean and G. Latouche. Approximations to quasi-birth-and-death processes with infinite blocks. Adv. in Appl. Probab., 42(4):1102-1125, 2010.
[2] D. Bini, S. Massei, B. Meini, and L. Robol. On quadratic matrix equations with infinite size coefficients encountered in QBD stochastic processes. Numer. Linear Algebra Appl., in press.
[3] D. Bini and V. Y. Pan. Polynomial and matrix computations. Vol. 1. Progress in Theoretical Computer Science. Birkh¨auser Boston, Inc., Boston, MA, 1994. Fundamental algorithms.
[4] D. A. Bini and A. B¨ottcher. Polynomial factorization through Toeplitz matrix computations. Linear Algebra Appl., 366:25-37, 2003.
[5] D. A. Bini, G. Fiorentino, L. Gemignani, and B. Meini. Effective fast algorithms for polynomial spectral factorization. Numer. Algorithms, 34(2-4):217-227, 2003.
[6] D. A. Bini, L. Gemignani, and B. Meini. Computations with infinite Toeplitz matrices and polynomials. Linear Algebra Appl., 343/344:21-61, 2002.
[7] D. A. Bini, S. Massei, and B. Meini. On functions of quasi Toeplitz matrices. Sb. Math., 208(11):56-74, 2017.
[8] D. A. Bini, S. Massei, and B. Meini. Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Mathematics of Computation, 2017. Accepted for publication, arXiv:1611.06337.
[9] D. A. Bini, S. Massei, and L. Robol. Efficient cyclic reduction for quasi-birth-death problems with rank structured blocks. Appl. Numer. Math., 116:37-46, 2017.
[10] D. A. Bini, S. Massei, and L. Robol. On the decay of the off-diagonal singular values in cyclic reduction. Linear Algebra Appl., 519:27-53, 2017.
[11] D. A. Bini and B. Meini. Effective methods for solving banded Toeplitz systems. SIAM J. Matrix Anal. Appl., 20(3):700-719, 1999.
[12] D. A. Bini and B. Meini. The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. Numer. Algorithms, 51(1):23-60, 2009.
[13] D. A. Bini and B. Meini. On the exponential of semi-infinite quasi-toeplitz matrices. arXiv preprint arXiv:1611.06380, 2016.
[14] A. B¨ottcher and S. M. Grudsky. Spectral properties of banded Toeplitz matrices. Siam, 2005.
[15] A. B¨ottcher and M. Halwass. A Newton method for canonical Wiener-Hopf and spectral factorization of matrix polynomials. Electron. J. Linear Algebra, 26:873-897, 2013.
[16] A. B¨ottcher and M. Halwass. Wiener-Hopf and spectral factorization of real polynomials by Newton's method. Linear Algebra Appl., 438(12):4760-4805, 2013.
[17] A. B¨ottcher and B. Silbermann. Introduction to large truncated Toeplitz matrices. Springer Science & Business Media, 2012.
[18] I. C. Gohberg. On an application of the theory of normed rings to singular integral equations. Uspehi Matem. Nauk (N.S.), 7(2(48)):149-156, 1952.
[19] J. Guti´errez-Guti´errez, P. M. Crespo, and A. B¨ottcher. Functions of the banded Hermitian block Toeplitz matrices in signal processing. Linear Algebra Appl., 422(2-3):788-807, 2007.
[20] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217-288, 2011.
[21] N. J. Higham. Functions of matrices: theory and computation. SIAM, 2008.
[22] J. R. Jackson. Networks of waiting lines. Oper. Res., 5(4):518-521, 1957.
[23] S. Kapodistria and Z. Palmowski. Matrix geometric approach for random walks: Stability condition and equilibrium distribution. Stoch. Models, 33(4):572-597, 2017.
[24] M. Kobayashi and M. Miyazawa. Revisiting the tail asymptotics of the double QBD process: refinement and complete solutions for the coordinate and diagonal directions. In Matrixanalytic methods in stochastic models, volume 27 of Springer Proc. Math. Stat., pages 145-185. Springer, New York, 2013.
[25] D. Kressner and R. Luce. Fast Computation of the Matrix Exponential for a Toeplitz Matrix. SIAM J. Matrix Anal. Appl., 39(1):23-47, 2018.
[26] G. Latouche, G. T. Nguyen, and P. G. Taylor. Queues with boundary assistance: the effects of truncation. Queueing Syst., 69(2):175-197, 2011.
[27] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia PA, 1999.
[28] G. Latouche and P. Taylor. Truncation and augmentation of level-independent QBD processes. Stochastic Process. Appl., 99(1):53-80, 2002.
[29] S. T. Lee, H.-K. Pang, and H.-W. Sun. Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput., 32(2):774-792, 2010.
[30] M. Lindner. Infinite matrices and their finite sections. Frontiers in Mathematics. Birkh¨auser Verlag, Basel, 2006. An introduction to the limit operator method.
[31] M. Miyazawa. Light tail asymptotics in multidimensional reflecting processes for queueing networks. Top, 19(2):233-299, 2011.
[32] M. F. Neuts. Matrix-geometric solutions in stochastic models: an algorithmic approac h. Courier Dover Publications, 1981.
[33] C. C. Paige. Bidiagonalization of matrices and solutions of the linear equations. SIAM J. Numer. Anal., 11:197-209, 1974.
[34] H. Widom. Asymptotic behavior of block Toeplitz matrices and determinants. II. Advances in Math., 21(1):1-29, 1976.