Journal article  Open Access

Give more data, awareness and control to individual citizens, and they will help COVID-19 containment

Nanni M., Andrienko G., Barabasi A. -L., Boldrini C., Bonchi F., Cattuto C., Chiaromonte F., Comande G., Conti M., Cote M., Dignum F., Dignum V., Domingo-Ferrer J., Ferragina P., Giannotti F., Guidotti R., Helbing D., Kaski K., Kertesz J., Lehmann S., Lepri B., Lukowicz P., Matwin S., Jimenez D. M., Monreale A., Morik K., Oliver N., Passarella A., Passerini A., Pedreschi D., Pentland A., Pianesi F., Pratesi F., Rinzivillo S., Ruggieri S., Siebes A., Torra V., Trasarti R., Hoven J., Vespignani A.

Settore INF/01 - Informatica  magatzem de dades personals  RA0421  análisis de datos de movilidad  Personal Data Store  Library and Information Sciences  BJ  Original Paper  Mobility data analysi  Informática -- Aspectos sociológicos  QA75  anàlisi de dades de mobilitat  Electronic data processing -- Sociological aspects  Mobility data analysis  seguimiento de contactos  COVID-19  almacén de datos personales  Computer Science Applications  Computer Sciences  Personal data store  Contact tracing  seguiment de contactes  Informàtica -- Aspectes sociològics  Datavetenskap (datalogi) 

The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the "phase 2" of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens' privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens' "personal data stores", to be shared separately and selectively (e.g., with a backend system, but possibly also with other citizens), voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: it allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. The decentralized approach is also scalable to large populations, in that only the data of positive patients need be handled at a central level. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allow the user to share spatio-temporal aggregates--if and when they want and for specific aims--with health authorities, for instance. Second, we favour a longer-term pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.

Source: Ethics and information technology 23 (2021). doi:10.1007/s10676-020-09572-w

Publisher: Kluwer Academic Publishers, Dordrecht ;, Paesi Bassi


Back to previous page
BibTeX entry
	title = {Give more data, awareness and control to individual citizens, and they will help COVID-19 containment},
	author = {Nanni M. and Andrienko G. and Barabasi A. -L. and Boldrini C. and Bonchi F. and Cattuto C. and Chiaromonte F. and Comande G. and Conti M. and Cote M. and Dignum F. and Dignum V. and Domingo-Ferrer J. and Ferragina P. and Giannotti F. and Guidotti R. and Helbing D. and Kaski K. and Kertesz J. and Lehmann S. and Lepri B. and Lukowicz P. and Matwin S. and Jimenez D. M. and Monreale A. and Morik K. and Oliver N. and Passarella A. and Passerini A. and Pedreschi D. and Pentland A. and Pianesi F. and Pratesi F. and Rinzivillo S. and Ruggieri S. and Siebes A. and Torra V. and Trasarti R. and Hoven J. and Vespignani A.},
	publisher = {Kluwer Academic Publishers, Dordrecht ;, Paesi Bassi},
	doi = {10.1007/s10676-020-09572-w},
	journal = {Ethics and information technology},
	volume = {23},
	year = {2021}

SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics