2023
Journal article  Open Access

A survey on deep learning for human mobility

Luca M., Barlacchi G., Lepri B., Pappalardo L.

Computer Science - Machine Learning  Crowd flow prediction  Social and Information Networks (cs.SI)  General Computer Science  Next-location prediction  Trajectory generation  I.2  Human mobility  Deep learning  Datasets  Computer Science - Social and Information Networks  FOS: Computer and information sciences  Artificial Intelligence (cs.AI)  Mobility flows  Theoretical Computer Science  Trajectory  Artificial intelligence  Machine Learning (cs.LG)  Computer Science - Artificial Intelligence 

The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the predictive power of artificial intelligence, triggered the application of deep learning to human mobility. Existing surveys focus on single tasks, data sources, mechanistic or traditional machine learning approaches, while a comprehensive description of deep learning solutions is missing. This survey provides a taxonomy of mobility tasks, a discussion on the challenges related to each task and how deep learning may overcome the limitations of traditional models, a description of the most relevant solutions to the mobility tasks described above, and the relevant challenges for the future. Our survey is a guide to the leading deep learning solutions to next-location prediction, crowd flow prediction, trajectory generation, and flow generation. At the same time, it helps deep learning scientists and practitioners understand the fundamental concepts and the open challenges of the study of human mobility.

Source: ACM computing surveys 55 (2023). doi:10.1145/3485125

Publisher: Association for Computing Machinery,, New York, N.Y. , Stati Uniti d'America


[1] Mohammed N Ahmed, Gianni Barlacchi, Stefano Braghin, Francesco Calabrese, Michele Ferretti, Vincent PA Lonij, Rahul Nair, Rana Novack, Jurij Paraszczak, and Andeep S Toor. 2016. A Multi-Scale Approach to Data-Driven Mass Migration Analysis.. In SoGood@ ECML-PKDD.
[2] Yi Ai, Zongping Li, Mi Gan, Yunpeng Zhang, Daben Yu, Wei Chen, and Yanni Ju. 2019. A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Computing and Applications 31, 5 (2019), 1665-1677.
[3] Laura Alessandretti, Piotr Sapiezynski, Vedran Sekara, Sune Lehmann, and Andrea Baronchelli. 2018. Evidence for a conserved quantity in human mobility. Nature Human Behaviour 2, 7 (2018), 485-491.
[4] Gennady Andrienko, Natalia Andrienko, Chiara Boldrini, Guido Caldarelli, Paolo Cintia, Stefano Cresci, Angelo Facchini, Fosca Giannotti, Aristides Gionis, Riccardo Guidotti, Michael Mathioudakis, Cristina Ioana Muntean, Luca Pappalardo, Dino Pedreschi, Evangelos Pournaras, Francesca Pratesi, Maurizio Tesconi, and Roberto Trasarti. 2020. (So) Big Data and the transformation of the city. International Journal of Data Science and Analytics (2020).
[5] Daniel Ashbrook and Thad Starner. 2002. Learning significant locations and predicting user movement with GPS. In Proceedings. Sixth International Symposium on Wearable Computers,. 101-108.
[6] Hugo Barbosa, Marc Barthelemy, Gourab Ghoshal, Charlotte R James, Maxime Lenormand, Thomas Louail, Ronaldo Menezes, José J Ramasco, Filippo Simini, and Marcello Tomasini. 2018. Human mobility: Models and applications. Physics Reports 734 (2018), 1-74.
[7] Hugo Barbosa, Fernando B de Lima-Neto, Alexandre Evsukof, and Ronaldo Menezes. 2015. The efect of recency to human mobility. EPJ Data Science 4 (2015), 1-14.
[8] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex Pentland, and Bruno Lepri. 2015. A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Scientific data 2 (2015), 150055.
[9] Gianni Barlacchi, Christos Perentis, Abhinav Mehrotra, Mirco Musolesi, and Bruno Lepri. 2017. Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors. EPJ Data Science 6, 1 (2017), 27.
[10] Gianni Barlacchi, Alberto Rossi, Bruno Lepri, and Alessandro Moschitti. 2017. Structural semantic models for automatic analysis of urban areas. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 279-291.
[11] Armando Bazzani, Bruno Giorgini, Sandro Rambaldi, Riccardo Gallotti, and Luca Giovannini. 2010. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. Journal of Statistical Mechanics: Theory and Experiment 2010, 05 (2010), P05001.
[12] Citi Bike. 2013. Citi Bike System Data - NYC. https://www.citibikenyc.com/system-data
[13] Capital Bikeshare. 2011. Capital Bikeshare - Washington DC. https://www.capitalbikeshare.com/system-data
[14] V. Bindschaedler and R. Shokri. 2016. Synthesizing Plausible Privacy-Preserving Location Traces. In 2016 IEEE Symposium on Security and Privacy (SP). 546-563.
[15] Justine I. Blanford, Zhuojie Huang, Alexander Savelyev, and Alan M. MacEachren. 2015. Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement. PLOS ONE 10, 6 (2015), 1-16.
[16] Vincent D. Blondel, Adeline Decuyper, and Gautier Krings. 2015. A survey of results on mobile phone datasets analysis. EPJ Data Science 4, 1 (2015), 10.
[17] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015. Time series analysis: forecasting and control. John Wiley & Sons.
[18] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici, and Antonello Rabufi. 2014. CRAWDAD dataset roma/taxi (v. 2014-07-17).
[19] Dirk Brockmann, Lars Hufnagel, and Theo Geisel. 2006. The scaling laws of human travel. Nature 439, 7075 (2006), 462-465.
[20] Ingrid Burbey and Thomas L Martin. 2012. A survey on predicting personal mobility. International Journal of Pervasive Computing and Communications (2012).
[21] F. Calabrese, G. Di Lorenzo, L. Liu, and C. Ratti. 2011. Estimating Origin-Destination Flows Using Mobile Phone Location Data. IEEE Pervasive Computing (2011), 36-44.
[22] Francesco Calabrese, Giusy Di Lorenzo, and Carlo Ratti. 2010. Human mobility prediction based on individual and collective geographical preferences. In 13th international IEEE conference on intelligent transportation systems. 312-317.
[23] Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 1293-1304.
[24] Justin David Carlson. 2010. Mapping Large, Urban Environments with GPS-Aided SLAM. Ph.D. Dissertation. Carnegie Mellon University.
[25] Shwu-Jing Chang, Gong-Ying Hsu, Jia-Ao Yang, Kuan-Ning Chen, Yung-Fang Chiu, and Fu-Tong Chang. 2010. Vessel trafic analysis for maritime Intelligent Transportation System. In 2010 IEEE 71st Vehicular Technology Conference. IEEE, 1-4.
[26] Guangshuo Chen, Aline Carneiro Viana, Marco Fiore, and Carlos Sarraute. 2019. Complete trajectory reconstruction from sparse mobile phone data. EPJ Data Science 8, 1 (2019), 30.
[27] J. Chen, Z. Xiao, D. Wang, W. Long, and V. Havyarimana. 2019. Stay of Interest: A Dynamic Spatiotemporal Stay Behavior Perception Method for Private Car Users. In 2019 IEEE 21st International Conference on High Performance Computing and Communications. 1526-1532.
[28] Yile Chen, Cheng Long, Gao Cong, and Chenliang Li. 2020. Context-aware Deep Model for Joint Mobility and Time Prediction. In Proceedings of the 13th International Conference on Web Search and Data Mining. 106-114.
[29] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. 1082-1090.
[30] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 1724-1734.
[31] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).
[32] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter Stewart. 2016. Retain: An interpretable predictive model for healthcare using reverse time attention mechanism. In Advances in Neural Information Processing Systems. 3504-3512.
[33] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. 2015. Attention-based models for speech recognition. In Advances in neural information processing systems. 577-585.
[34] Balázs Cs Csáji, Arnaud Browet, Vincent A Traag, Jean-Charles Delvenne, Etienne Huens, Paul Van Dooren, Zbigniew Smoreda, and Vincent D Blondel. 2013. Exploring the mobility of mobile phone users. Physica A: statistical mechanics and its applications 392, 6 (2013), 1459-1473.
[35] Yilan Cui, Xing Xie, and Yi Liu. 2018. Social media and mobility landscape: Uncovering spatial patterns of urban human mobility with multi source data. Frontiers of Environmental Science & Engineering 12, 5 (2018), 7.
[36] Alexandre De Brébisson, Étienne Simon, Alex Auvolat, Pascal Vincent, and Yoshua Bengio. 2015. Artificial neural networks applied to taxi destination prediction. In Proceedings of the 2015th International Conference on ECML PKDD Discovery Challenge. 40-51.
[37] Yves-Alexandre de Montjoye, Sébastien Gambs, Vincent Blondel, Geofrey Canright, Nicolas de Cordes, Sébastien Deletaille, Kenth Engø-Monsen, Manuel Garcia-Herranz, Jake Kendall, Cameron Kerry, Gautier Krings, Emmanuel Letouzé, Miguel Luengo-Oroz, Nuria Oliver, Luc Rocher, Alex Rutherford, Zbigniew Smoreda, Jessica Steele, Erik Wetter, Alex “Sandy” Pentland, and Linus Bengtsson. 2018. On the privacy-conscientious use of mobile phone data. Scientific Data 5, 1 (2018), 180286.
[38] Mark S Dougherty and Mark R Cobbett. 1997. Short-term inter-urban trafic forecasts using neural networks. International journal of forecasting 13, 1 (1997), 21-31.
[39] Bowen Du, Hao Peng, Senzhang Wang, Md Zakirul Alam Bhuiyan, Lihong Wang, Qiran Gong, Lin Liu, and Jing Li. 2019. Deep irregular convolutional residual LSTM for urban trafic passenger flows prediction. IEEE Transactions on Intelligent Transportation Systems 21, 3 (2019), 972-985.
[40] Zhanwei Du, Yongjian Yang, Zeynep Ertem, Chao Gao, Liping Huang, Qiuyang Huang, and Yuan Bai. 2019. Inter-urban mobility via cellular position tracking in the southeast Songliao Basin, Northeast China. Scientific data 6, 1 (2019), 1-6.
[41] Zhanwei Du, Yongjian Yang, Chao Gao, Liping Huang, Qiuyang Huang, and Yuan Bai. 2018. The temporal network of mobile phone users in Changchun Municipality, Northeast China. Scientific data 5, 1 (2018), 1-7.
[42] Nathan Eagle and Alex Sandy Pentland. 2009. Eigenbehaviors: identifying structure in routine. Behavioral Ecology and Sociobiology 63, 11 (2009), 1689-1689.
[43] Patrick Ebel, Ibrahim Emre Göl, Christoph Lingenfelder, and Andreas Vogelsang. 2020. Destination Prediction Based on Partial Trajectory Data. arXiv preprint arXiv:2004.07473 (2020).
[44] Zeinab Ebrahimpour, Wanggen Wan, Ofelia Cervantes, Tianhang Luo, and Hidayat Ullah. 2019. Comparison of main approaches for extracting behavior features from crowd flow analysis. ISPRS International Journal of Geo-Information 8, 10 (2019), 440.
[45] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. 2017. Real-valued (medical) time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633 (2017).
[46] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. 2013. Learning Hierarchical Features for Scene Labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 8 (2013), 1915-1929.
[47] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. 2018. Deepmove: Predicting human mobility with attentional recurrent networks. In Proceedings of the 2018 world wide web conference. 1459-1468.
[48] Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. 2020. Learning to Simulate Human Mobility. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD '20). Association for Computing Machinery, New York, NY, USA, 3426-3433. https://doi.org/10.1145/3394486.3412862
[49] Yunhe Feng and Wenjun Zhou. 2020. Is Working From Home The New Norm? An Observational Study Based on a Large Geo-tagged COVID-19 Twitter Dataset. arXiv:cs.SI/2006.08581
[50] Z. Feng and Y. Zhu. 2016. A Survey on Trajectory Data Mining: Techniques and Applications. IEEE Access 4 (2016), 2056-2067.
[51] V. Fernandez Arguedas, G. Pallotta, and M. Vespe. 2018. Maritime Trafic Networks: From Historical Positioning Data to Unsupervised Maritime Trafic Monitoring. IEEE Transactions on Intelligent Transportation Systems 19, 3 (2018), 722-732.
[52] Michele Ferretti, Gianni Barlacchi, Luca Pappalardo, Lorenzo Lucchini, and Bruno Lepri. 2018. Weak nodes detection in urban transport systems: Planning for resilience in Singapore. In 2018 IEEE 5th international conference on data science and advanced analytics (DSAA). IEEE, 472-480.
[53] Marco Fiore, Panagiota Katsikouli, Elli Zavou, Mathieu Cunche, Franccoise Fessant, Dominique Le Hello, Ulrich Matchi Aivodji, Baptiste Olivier, Tony Quertier, and Razvan Stanica. 2019. Privacy in trajectory micro-data publishing : a survey. arXiv: Cryptography and Security (2019).
[54] LIVIO Florio and LORENZO Mussone. 1996. Neural-network models for classification and forecasting of freeway trafic flow stability. Control Engineering Practice 4, 2 (1996), 153-164.
[55] Riccardo Gallotti, Armando Bazzani, Mirko Degli Esposti, and Sandro Rambaldi. 2013. Entropic measures of individual mobility patterns. Journal of Statistical Mechanics: Theory and Experiment 2013, 10 (2013), P10022.
[56] Riccardo Gallotti, Armando Bazzani, Sandro Rambaldi, and Marc Barthelemy. 2016. A stochastic model of randomly accelerated walkers for human mobility. Nature Communications 7, 1 (2016), 12600.
[57] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. 2010. Show me how you move and I will tell you who you are. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS. 34-41.
[58] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. 2012. Next place prediction using mobility markov chains. In Proceedings of the First Workshop on Measurement, Privacy, and Mobility. 1-6.
[59] Qiang Gao, Fan Zhou, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fengli Zhang. 2019. Predicting human mobility via variational attention. In The World Wide Web Conference. 2750-2756.
[60] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Understanding individual human mobility patterns. nature 453, 7196 (2008), 779-782.
[61] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep learning. Vol. 1. MIT press Cambridge.
[62] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems. 2672-2680.
[63] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. 2013. Hybrid speech recognition with deep bidirectional LSTM. In 2013 IEEE workshop on automatic speech recognition and understanding. IEEE, 273-278.
[64] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks 18, 5-6 (2005), 602-610.
[65] Clark L Gray and Valerie Mueller. 2012. Natural disasters and population mobility in Bangladesh. Proceedings of the National Academy of Sciences 109, 16 (2012), 6000-6005.
[66] Valerio Grossi, Beatrice Rapisarda, Fosca Giannotti, and Dino Pedreschi. 2018. Data science at SoBigData: the European research infrastructure for social mining and big data analytics. International Journal of Data Science and Analytics 6, 3 (2018), 205-216.
[67] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 855-864.
[68] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017. Improved Training of Wasserstein GANs. In Proceedings of the 31st International Conference on Neural Information Processing Systems. 5769-5779.
[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778.
[70] Andrea Hess, Karin Anna Hummel, Wilfried N Gansterer, and Günter Haring. 2015. Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Computing Surveys (CSUR) 48, 3 (2015), 1-39.
[71] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735-1780.
[72] D. Huang, X. Song, Z. Fan, R. Jiang, R. Shibasaki, Y. Zhang, H. Wang, and Y. Kato. 2019. A Variational Autoencoder Based Generative Model of Urban Human Mobility. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). 425-430.
[73] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2017. Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2261-2269.
[74] D H HUBEL and T N WIESEL. 1959. Receptive fields of single neurones in the cat's striate cortex. The Journal of physiology 148, 3 (1959), 574-591.
[75] D. H. Hubel and T. N. Wiesel. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology 160, 1 (1962), 106-154.
[76] Kasthuri Jayarajah, Andrew Tan, and Archan Misra. 2018. Understanding the Interdependency of Land Use and Mobility for Urban Planning. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. Association for Computing Machinery, 1079-1087.
[77] Renhe Jiang, Xuan Song, Zipei Fan, Tianqi Xia, Quanjun Chen, Satoshi Miyazawa, and Ryosuke Shibasaki. 2018. Deepurbanmomentum: An online deep-learning system for short-term urban mobility prediction. In Thirty-Second AAAI Conference on Artificial Intelligence .
[78] Shan Jiang, Gaston A. Fiore, Yingxiang Yang, Joseph Ferreira, Emilio Frazzoli, and Marta C. González. 2013. A Review of Urban Computing for Mobile Phone Traces: Current Methods, Challenges and Opportunities. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing.
[79] Shan Jiang, Yingxiang Yang, Siddharth Gupta, Daniele Veneziano, Shounak Athavale, and Marta C. Gonzalez. 2016. The TimeGeo modeling framework for urban mobility without travel surveys. Proceedings of the National Academy of Sciences 113 (2016), 201524261.
[80] Wenwei Jin, Youfang Lin, Zhihao Wu, and Huaiyu Wan. 2018. Spatio-Temporal Recurrent Convolutional Networks for Citywide Short-Term Crowd Flows Prediction.
[81] Ma Jun and Meng Ying. 2008. Research of trafic flow forecasting based on neural network. In 2008 Second International Symposium on Intelligent Information Technology Application, Vol. 2. IEEE, 104-108.
[82] Raja Jurdak, Kun Zhao, Jiajun Liu, Maurice AbouJaoude, Mark Cameron, and David Newth. 2015. Understanding Human Mobility from Twitter. PLOS ONE 10, 7 (2015), 1-16.
[83] Yiannis Kamarianakis and Poulicos Prastacos. 2003. Forecasting trafic flow conditions in an urban network: Comparison of multivariate and univariate approaches. Transportation Research Record 1857, 1 (2003), 74-84.
[84] Yiannis Kamarianakis and Poulicos Prastacos. 2005. Space-time modeling of trafic flow. Computers & Geosciences 31, 2 (2005), 119-133.
[85] Dmytro Karamshuk, Chiara Boldrini, Marco Conti, and Andrea Passarella. 2011. Human mobility models for opportunistic networks. IEEE Communications Magazine 49, 12 (2011), 157-165.
[86] L. Khaidem, M. Luca, F. Yang, A. Anand, B. Lepri, and W. Dong. 2020. Optimizing Transportation Dynamics at a City-Scale Using a Reinforcement Learning Framework. IEEE Access 8 (2020), 171528-171541.
[87] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. 2020. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review (2020).
[88] Niko Kiukkonen, Jan Blom, Olivier Dousse, Daniel Gatica-Perez, and Juha Laurila. 2010. Towards rich mobile phone datasets: Lausanne data collection campaign. Proc. ICPS, Berlin 68 (2010).
[89] J. F. Kolen and S. C. Kremer. 2001. Gradient Flow in Recurrent Nets: The Dificulty of Learning LongTerm Dependencies . 237-243.
[90] Dejiang Kong and Fei Wu. 2018. HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction.. In IJCAI. 2341-2347.
[91] Vartika Koolwal and Krishna Kumar Mohbey. 2020. A comprehensive survey on trajectory-based location prediction. Iran Journal of Computer Science 3, 2 (2020), 65-91.
[92] Moritz UG Kraemer, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Brennan Klein, David M Pigott, Louis Du Plessis, Nuno R Faria, Ruoran Li, William P Hanage, et al. 2020. The efect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 6490 (2020), 493-497.
[93] Alex Krizhevsky, Ilya Sutskever, and Geofrey E Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097-1105.
[94] Vaibhav Kulkarni, Natasa Tagasovska, Thibault Vatter, and Benoit Garbinato. 2018. Generative models for simulating mobility trajectories. arXiv preprint arXiv:1811.12801 (2018).
[122] Luca Pappalardo, Maarten Vanhoof, Lorenzo Gabrielli, Zbigniew Smoreda, Dino Pedreschi, and Fosca Giannotti. 2016. An analytical framework to nowcast well-being using mobile phone data. International Journal of Data Science and Analytics (2016), 75-92.
[123] Roberto Pellungrini, Luca Pappalardo, Francesca Pratesi, and Anna Monreale. 2017. A Data Mining Approach to Assess Privacy Risk in Human Mobility Data. ACM Transactions on Intelligent Systems and Technologies 9, 3 (2017).
[124] R. Pellungrini, L. Pappalardo, F. Simini, and A. Monreale. 2020. Modeling Adversarial Behavior Against Mobility Data Privacy. IEEE Transactions on Intelligent Transportation Systems (2020), 1-14.
[125] Emanuele Pepe, Paolo Bajardi, Laetitia Gauvin, Filippo Privitera, Brennan Lake, Ciro Cattuto, and Michele Tizzoni. 2020. COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Scientific data 7, 1 (2020), 1-7.
[126] Christos Perentis, Michele Vescovi, Chiara Leonardi, Corrado Moiso, Mirco Musolesi, Fabio Pianesi, and Bruno Lepri. 2017. Anonymous or Not? Understanding the Factors Afecting Personal Mobile Data Disclosure. ACM Trans. Internet Technol. 17, 2 (2017).
[127] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2009. CRAWDAD dataset epfl/mobility (v. 2009-02-24).
[128] Rafael Prieto Curiel, Luca Pappalardo, Lorenzo Gabrielli, and Steven Richard Bishop. 2018. Gravity and scaling laws of city to city migration. PLOS ONE 13, 7 (2018), 1-19.
[129] F. Rebelo, C. Soares, and R. J. F. Rossetti. 2015. TwitterJam: Identification of mobility patterns in urban centers based on tweets. In 2015 IEEE First International Smart Cities Conference (ISC2). 1-6.
[130] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems. 91-99.
[131] Yibin Ren, Huanfa Chen, Yong Han, Tao Cheng, Yang Zhang, and Ge Chen. 2020. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes. International Journal of Geographical Information Science 34, 4 (2020), 802-823.
[132] Rafael Reuveny. 2007. Climate change-induced migration and violent conflict. Political geography 26, 6 (2007), 656-673.
[133] S. Rinzivillo, L. Gabrielli, M. Nanni, L. Pappalardo, D. Pedreschi, and F. Giannotti. 2014. The purpose of motion: Learning activities from Individual Mobility Networks. In 2014 International Conference on Data Science and Advanced Analytics (DSAA). 312-318.
[134] Maria Riveiro, Giuliana Pallotta, and Michele Vespe. 2018. Maritime anomaly detection: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8, 5 (2018), e1266.
[135] Alberto Rossi, Gianni Barlacchi, Monica Bianchini, and Bruno Lepri. 2019. Modelling Taxi Drivers' Behaviour for the Next Destination Prediction. IEEE Transactions on Intelligent Transportation Systems (2019).
[136] Alessio Rossi, Luca Pappalardo, Paolo Cintia, F. Marcello Iaia, Javier Fernández, and Daniel Medina. 2018. Efective injury forecasting in soccer with GPS training data and machine learning. PLOS ONE 13, 7 (2018), 1-15.
[137] Luca Rossi, Matthew J. Williams, Christopher Stich, and Mirco Musolesi. 2015. Privacy and the City: User Identification and Location Semantics in Location-Based Social Networks. In Proceedings of the 9th International AAAI Conference on Web and Social Media.
[138] N. W. Ruktanonchai, J. R. Floyd, S. Lai, C. W. Ruktanonchai, A. Sadilek, P. Rente-Lourenco, X. Ben, A. Carioli, J. Gwinn, J. E. Steele, O. Prosper, A. Schneider, A. Oplinger, P. Eastham, and A. J. Tatem. 2020. Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science 369, 6510 (2020), 1465-1470.
[139] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Internal Representations by Error Propagation. MIT Press, 318-362.
[140] T. Russo, L. D'Andrea, A. Parisi, M. Martinelli, A. Belardinelli, F. Boccoli, I. Cignini, M. Tordoni, and S. Cataudella. 2016. Assessing the ifshing footprint using data integrated from diferent tracking devices: Issues and opportunities. Ecological Indicators 69 (2016), 818 - 827.
[141] BA Sabarish, R Karthi, and T Gireeshkumar. 2015. A survey of location prediction using trajectory mining. In Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. Springer, 119-127.
[142] Christian M. Schneider, Vitaly Belik, Thomas Couronné, Zbigniew Smoreda, and Marta C. González. 2013. Unravelling daily human mobility motifs. Journal of The Royal Society Interface 10, 84 (2013), 20130246.
[143] M. Schuster and K. K. Paliwal. 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45, 11 (1997), 2673-2681.
[144] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In Proceedings of the Eleventh ACM Conference on Recommender Systems. 297-305.
[145] Yan Shi, Haoran Feng, Xiongfei Geng, Xingui Tang, and Yongcai Wang. 2019. A Survey of Hybrid Deep Learning Methods for Trafic Flow Prediction. In Proceedings of the 2019 3rd International Conference on Advances in Image Processing. Association for Computing Machinery, 133-138.
[146] S. Shin, H. Jeon, C. Cho, S. Yoon, and T. Kim. 2020. User Mobility Synthesis based on Generative Adversarial Networks: A Survey. In 2020 22nd International Conference on Advanced Communication Technology (ICACT). 94-103.
[147] Filippo Simini, Gianni Barlacchi, Massimiliano Luca, and Luca Pappalardo. 2020. Deep Gravity: enhancing mobility flows generation with deep neural networks and geographic information. arXiv:cs.LG/2012.00489
[148] Filippo Simini, Marta C. González, Amos Maritan, and Albert-László Barabási. 2012. A universal model for mobility and migration patterns. Nature 484, 7392 (2012), 96-100.
[149] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, Yoshua Bengio and Yann LeCun (Eds.).
[150] SoBigData. 2015. SoBigData catalogue. https://sobigdata.d4science.org/catalogue-sobigdata
[151] B. H. Soleimani, E. N. De Souza, C. Hilliard, and S. Matwin. 2015. Anomaly detection in maritime data based on geometrical analysis of trajectories. In 2015 18th International Conference on Information Fusion (Fusion). 1100-1105.
[152] G. Solmaz and D. Turgut. 2019. A Survey of Human Mobility Models. IEEE Access 7 (2019), 125711-125731.
[153] Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási. 2010. Modelling the scaling properties of human mobility. Nature Physics 6, 10 (2010), 818-823.
[154] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. 2010. Limits of predictability in human mobility. Science 327, 5968 (2010), 1018-1021.
[155] H. Y. Song, M. S. Baek, and M. Sung. 2019. Generating Human Mobility Route Based on Generative Adversarial Network. In 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). 91-99.
[156] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, Ryosuke Shibasaki, Nicholas Jing Yuan, and Xing Xie. 2016. Prediction and Simulation of Human Mobility Following Natural Disasters. ACM Transactions on Intelligent Systems and Technologies 8, 2 (2016).
[157] Victor Soto, Vanessa Frias-Martinez, Jesus Virseda, and Enrique Frias-Martinez. 2011. Prediction of socioeconomic levels using cell phone records. In International Conference on User Modeling, Adaptation, and Personalization. 377-388.
[158] University of Maryland Start. 2009. Global Terrorism Database. http://www.start-dev.umd.edu/gtd/
[159] Iain D Stewart, Chris A Kennedy, Angelo Facchini, and Renata Mele. 2018. The electric city as a solution to sustainable urban development. Journal of Urban Technology 25, 1 (2018), 3-20.
[160] Arkadiusz Stopczynski, Vedran Sekara, Piotr Sapiezynski, Andrea Cuttone, Mette My Madsen, Jakob Eg Larsen, and Sune Lehmann. 2014. Measuring Large-Scale Social Networks with High Resolution. PLOS ONE 9, 4 (2014), 1-24.
[161] Junkai Sun, Junbo Zhang, Qiaofei Li, Xiuwen Yi, and Yu Zheng. 2019. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks. arXiv preprint arXiv:1903.07789 (2019).
[162] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems. 3104-3112.
[163] Andrew J Tatem. 2014. Mapping the denominator: spatial demography in the measurement of progress. International health 6, 3 (2014), 153-155.
[164] Andrew J Tatem. 2017. WorldPop, open data for spatial demography. Scientific data 4, 1 (2017), 1-4.
[165] Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. 2016. YFCC100M. Commun. ACM 59, 2 (2016), 64-73.
[166] Chujie Tian, Xinning Zhu, Zheng Hu, and Jian Ma. 2020. Deep spatial-temporal networks for crowd flows prediction by dilated convolutions and region-shifting attention mechanism. Applied Intelligence (2020), 1-14.
[167] New York City TLC. 2009. New York City Taxi & Limousine Commission. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
[168] Marcello Tomasini, Basim Mahmood, Franco Zambonelli, Angelo Brayner, and Ronaldo Menezes. 2017. On the efect of human mobility to the design of metropolitan mobile opportunistic networks of sensors. Pervasive and Mobile Computing 38 (2017), 215 - 232.
[169] Jameson Toole, Carlos Herrera-Yague, Christian Schneider, and Marta C. Gonzalez. 2015. Coupling Human Mobility and Social Ties. Journal of the Royal Society Interface 12 (2015).
[170] Alexander Toshev and Christian Szegedy. 2014. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1653-1660.
[171] International Telecommunication Union. 2019. Measuring digital development Facts and figures . Technical Report. International Telecommunication Union.
[172] Michele Vespe, Maurizio Gibin, Alfredo Alessandrini, Fabrizio Natale, Fabio Mazzarella, and Giacomo C. Osio. 2016. Mapping EU ifshing activities using ship tracking data. Journal of Maps 12, sup1 (2016), 520-525.
[173] Vasiliki Voukelatou, Lorenzo Gabrielli, Ioanna Miliou, Stefano Cresci, Rajesh Sharma, Maurizio Tesconi, and Luca Pappalardo. 2020. Measuring objective and subjective well-being: dimensions and data sources. International Journal of Data Science and Analytics (2020).
[174] Di Wang, Tomio Miwa, and Takayuki Morikawa. 2020. Big Trajectory Data Mining: A Survey of Methods, Applications, and Services. Sensors 20, 16 (2020), 4571.
[175] Jinzhong Wang, Xiangjie Kong, Feng Xia, and Lijun Sun. 2019. Urban human mobility: Data-driven modeling and prediction. ACM SIGKDD Explorations Newsletter (2019), 1-19.
[176] Leye Wang, Xu Geng, Xiaojuan Ma, Feng Liu, and Qiang Yang. 2018. Cross-city transfer learning for deep spatio-temporal prediction. arXiv preprint arXiv:1802.00386 (2018).
[177] Yan Wang and John E Taylor. 2018. Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake. Natural hazards 92, 2 (2018), 907-925.
[178] Billy M Williams and Lester A Hoel. 2003. Modeling and forecasting vehicular trafic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of transportation engineering 129, 6 (2003), 664-672.
[179] Ruizhi Wu, Guangchun Luo, Junming Shao, L. Tian, and Chengzong Peng. 2018. Location prediction on trajectory data: A review. Big Data Min. Anal. 1 (2018), 108-127.
[180] Peng Xie, Tianrui Li, Jia Liu, Shengdong Du, Xin Yang, and Junbo Zhang. 2020. Urban flow prediction from spatiotemporal data using machine learning: A survey. Information Fusion 59 (2020), 1-12.
[181] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Advances in neural information processing systems. 802-810.
[182] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning. 2048-2057.
[183] Shuai Xu, Xiaoming Fu, Jiuxin Cao, Bo Liu, and Zhixiao Wang. 2020. Survey on user location prediction based on geo-social networking data. World Wide Web (2020), 1-44.
[184] Zhaojin Yan, Yijia Xiao, Liang Cheng, Rong He, Xiaoguang Ruan, Xiao Zhou, Manchun Li, and Ran Bin. 2020. Exploring AIS data for intelligent maritime routes extraction. Applied Ocean Research 101 (2020), 102271.
[185] Dingqi Yang, Benjamin Fankhauser, Paolo Rosso, and Philippe Cudre-Mauroux. 2020. Location Prediction over Sparse User Mobility Traces Using RNNs: Flashback in Hidden States!. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. 2184-2190.
[186] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. 2019. Revisiting User Mobility and Social Relationships in LBSNs: A Hypergraph Embedding Approach. 2147-2157.
[187] Dingqi Yang, Daqing Zhang, Longbiao Chen, and Bingqing Qu. 2015. NationTelescope: Monitoring and visualizing large-scale collective behavior in LBSNs. Journal of Network and Computer Applications 55 (2015), 170-180.
[188] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2015. Participatory cultural mapping based on collective behavior in location based social networks. ACM Transactions on Intelligent Systems and Technology (2015). in press.
[189] Dingqi Yang, Daqing Zhang, Bingqing Qu, and Philippe Cudre-Mauroux. 2016. PrivCheck: privacy-preserving check-in data publishing for personalized location based services. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 545-556.
[190] Dingqi Yang, Daqing Zhang, Vincent. W. Zheng, and Zhiyong Yu. 2015. Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 1 (2015), 129-142.
[191] Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. 2017. Serm: A recurrent model for next location prediction in semantic trajectories. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2411-2414.
[192] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019. Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Trafic Prediction. In 2019 AAAI Conference on Artificial Intelligence (AAAI'19) .
[193] Yelp. 2017. Yelp Open Dataset. https://www.yelp.com/dataset
[194] Dan Yin and Qing Yang. 2018. GANs based density distribution privacy-preservation on mobility data. Security and Communication Networks 2018 (2018).
[195] Xueyan Yin, Genze Wu, Jinze Wei, Yanming Shen, Heng Qi, and Baocai Yin. 2020. A Comprehensive Survey on Trafic Prediction. arXiv preprint arXiv:2004.08555 (2020).
[196] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. Seqgan: Sequence generative adversarial nets with policy gradient. In Thirty-first AAAI conference on artificial intelligence .
[197] Hao Yuan, Xinning Zhu, Zheng Hu, and Chunhong Zhang. 2020. Deep Multi-View Residual Attention Network for Crowd Flows Prediction. Neurocomputing (2020).
[198] Chao Zhang, Jiawei Han, Lidan Shou, Jiajun Lu, and Thomas LLa Porta. 2014. Splitter: Mining fine-grained sequential patterns in semantic trajectories. Proceedings of the VLDb Endowment 7, 9 (2014), 769-780.
[199] Chao Zhang, Keyang Zhang, Quan Yuan, Luming Zhang, Tim Hanratty, and Jiawei Han. 2016. Gmove: Group-level mobility modeling using geo-tagged social media. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1305-1314.
[200] G Peter Zhang. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003), 159-175.
[201] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Thirty-First AAAI Conference on Artificial Intelligence .
[202] K. Zhao, S. Tarkoma, S. Liu, and H. Vo. 2016. Urban human mobility data mining: An overview. In 2016 IEEE International Conference on Big Data (Big Data). 1911-1920.
[203] Liang Zhao. 2020. Event Prediction in Big Data Era: A Systematic Survey. arXiv preprint arXiv:2007.09815 (2020).
[204] Xin Zheng, Jialong Han, and Aixin Sun. 2018. A survey of location prediction on twitter. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1652-1671.
[205] Yu Zheng. 2011. T-Drive trajectory data sample.
[206] Yu Zheng. 2015. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST) (2015), 1-41.
[207] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST) 5, 3 (2014), 1-55.
[208] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32-39.
[209] Yirong Zhou, Ye Wu, Jiangjiang Wu, Luo Chen, and Jun Li. 2018. Refined Taxi Demand Prediction with ST-Vec. In 2018 26th International Conference on Geoinformatics. IEEE, 1-6.
[210] Wen-Yuan Zhu, Wen-Chih Peng, Ling-Jyh Chen, Kai Zheng, and Xiaofang Zhou. 2015. Modeling User Mobility for Location Promotion in Location-Based Social Networks. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1573-1582.
[211] Ali Zonoozi, Jung-jae Kim, Xiao-Li Li, and Gao Cong. 2018. Periodic-CRN: A Convolutional Recurrent Model for Crowd Density Prediction with Recurring Periodic Patterns.. In IJCAI. 3732-3738.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:477672,
	title = {A survey on deep learning for human mobility},
	author = {Luca M. and Barlacchi G. and Lepri B. and Pappalardo L.},
	publisher = {Association for Computing Machinery,, New York, N.Y. , Stati Uniti d'America},
	doi = {10.1145/3485125 and 10.48550/arxiv.2012.02825},
	journal = {ACM computing surveys},
	volume = {55},
	year = {2023}
}

SoBigData-PlusPlus
SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics


OpenAIRE