198 result(s)
Page Size: 10, 20, 50
Export: bibtex, xml, json, csv
Order by:

CNR Author operator: and / or
more
Typology operator: and / or
Language operator: and / or
Date operator: and / or
more
Rights operator: and / or
2002 Journal article Restricted
Strong ellipticity of transversely isotropic elasticity tensors
Padovani C
The strong ellipticity of the elasticity tensor of a linearly hyperelastic, transversely isotropic material is investigated. The necessary and sufficient conditions for the elasticity tensor to be strongly elliptic are determined for the five constants characterizing it.Source: MECCANICA (DORDR., ONLINE), vol. 37 (issue 6), pp. 515-525

See at: CNR IRIS Restricted | CNR IRIS Restricted


2002 Journal article Restricted
Relaxed energy for transversely isotropic two-phase materials
Padovani C, Silhavy M
The paper gives a simple derivation of the relaxed energy Wqc for the quadratic double-well material with equal elastic moduli and analyzes Wqc in the transversely isotropic case. We observe that the energy W is a sum of a degenerate quadratic quasiconvex function and a function that depends on the strain only through a scalar variable. For such a W, the relaxation reduces to a one-dimensional convexification. Wqc depends on a constant g defined by a three-dimensional maximum problem. It is shown that in the transversely isotropic case the problem reduces to a maximization of a fraction of two quadratic polynomials over [0,1]. The maximization reveals several regimes and explicit formulas are given in the case of a transversely isotropic, positive definite displacement of the wells.Source: JOURNAL OF ELASTICITY, vol. 67, pp. 187-204

See at: CNR IRIS Restricted | CNR IRIS Restricted


2004 Journal article Restricted
A numerical method for the limit analysis of masonry structures
Degl'Innocenti S, Padovani C
The paper presents a numerical method for the limit analysis of structures made of a rigid no-tension material. Firstly, we formulate the constrained minimum problem resulting from the application of the kinematic theorem, which characterizes the collapse multiplier as the minimum of all kinematically admissible multipliers. Subsequently, by using the finite element method, we derive the corresponding discrete minimum problem in which the objective function is linear and the inequality constraints are linear as well as quadratic. The method is then applied to some examples for which the collapse multiplier and a collapse mechanism are explicitly known. Lastly, the solution to the minimum problem calculated via numerical codes for quadratic programming problems, is compared to the exact solution.Source: STRUCTURAL ENGINEERING AND MECHANICS, vol. 18 (issue 1), pp. 1-20
DOI: 10.12989/sem.2004.18.1.001
Metrics:


See at: STRUCTURAL ENGINEERING AND MECHANICS Restricted | CNR IRIS Restricted | CNR IRIS Restricted | koreascience.or.kr Restricted | www.scopus.com Restricted


2003 Conference article Restricted
Un metodo numerico per l'analisi limite di strutture in muratura
Degl'Innocenti S, Padovani C
In questo lavoro si presenta un metodo numerico per l'analisi limite di strutture costituite da un materiale rigido non resistente a trazione. In primo luogo si formula il problema di minimo vincolato derivante dall'applicazione del teorema cinematico, che caratterizza il moltiplicatore di collasso come il minimo dei moltiplicatori cinematicamente ammissibili. Successivamente, usando il metodo degli elementi finiti, si ricava il corrispondente problema di minimo discreto in cui la funzione obiettivo è lineare e i vincoli di uguaglianza sono sia lineari sia quadratici. Il metodo è quindi applicato ad alcuni esempi per i quali sono noti il moltiplicatore di collasso e un meccanismo di collasso. Finalmente la soluzione del problema di minimo calcolata con opportuni codici numerici per problemi di programmazione quadratica è confrontata con la soluzione esatta.

See at: CNR IRIS Restricted | CNR IRIS Restricted


2003 Other Metadata Only Access
A numerical method for the limit analysis of masonry structures
Degl'Innocenti S, Padovani C
The paper presents a numerical method for the limit analysis of structures made of a rigid no-tension material. Firstly, we formulate the constrained minimum problem resulting from the application of the kinematic theorem, which characterizes the collapse multiplier as the minimum of all kinematically admissible multipliers. Subsequently, by using the finite element method, we derive the corresponding discrete minimum problem in which the objective function is linear and the inequality constraints are linear as well as quadratic. The method is then applied to some examples for which the collapse multiplier and a collapse mechanism are explicitly known. Lastly, the solution to the minimum problem calculated via numerical codes for quadratic programming problems, is compared to the exact solution.

See at: CNR IRIS Restricted


2006 Other Restricted
Introduzione al calcolo tensoriale
Padovani C
Appunti redatti in occasione del corso 'Algrabra per la Meccanica'tenuto alla Scuola di Dottorato in Ingegneria 'Leonardo Da Vinci' presso l'Universita' di Pisa, 2006

See at: CNR IRIS Restricted | CNR IRIS Restricted


2001 Other Open Access OPEN
Relaxed energy for transversely isotropic two-phase materials
Padovani C, Miroslav S
This paper gives a simple derivation of the relaxed energy Wqc for the quadratic double-well material with equal elastic moduli and analyzes Wqc in the transversal isotropic case

See at: CNR IRIS Open Access | CNR IRIS Restricted


2002 Other Restricted
Appunti di analisi funzionale Parte I: Spazi metrici
Padovani C
An abstract is not available

See at: CNR IRIS Restricted | CNR IRIS Restricted


2009 Other Metadata Only Access
Elementi di calcolo tensoriale
Padovani C
Lezioni del corso "Introduzione al calcolo tensoriale", Scuola di Dottorato in Ingegneria "Leonardo da Vinci", Universita' di Pisa, 2009.

See at: CNR IRIS Restricted


2012 Other Restricted
NOSA-ITACA - Strumenti informatici per la modellazione e la verifica del comportamento strutturale di costruzioni antiche: il codice NOSA-ITACA
Padovani C, Lucchesi M
Tools for the modelling and assessment of the structural behaviour of masonry nuilfings of historical interest - Project Report.

See at: CNR IRIS Restricted | CNR IRIS Restricted


2013 Other Restricted
NOSA-ITACA - Strumenti informatici per la modellazione e la verifica del comportamento strutturale di costruzioni antiche: il codice NOSA-ITACA
Padovani C, Lucchesi M
Tools for the modelling and assessment of the structural behaviour of masonry buildings of historical interest - Project Report.

See at: CNR IRIS Restricted | CNR IRIS Restricted


2012 Book Restricted
Elementi di calcolo tensoriale
Padovani C
This is a collection of notes taken on the tensor calculus classes held at the Graduate School of Engineering "Leonardo da Vinci" at the University of Pisa from 2006 to 2011. The topics covered at lessons, aimed at providing the basic knowledge and tools necessary for the study of continuum mechanics, include fundamental results on tensor algebra and analysis. Chapter 1 provides a brief introduction to finite dimensional vector spaces. Then, Chapter 2 addresses the classical topics of tensor calculus, including symmetric and skew-symmetric tensors, the theorem of polar decomposition, fourth-order tensors, isotropic tensor functions and the differential calculus of tensor functions. The text is accompanied by numerous examples and exercises.Source: SIMAI E-LECTURE NOTES

See at: cab.unime.it Restricted | CNR IRIS Restricted | CNR IRIS Restricted


2013 Journal article Restricted
Coaxiality of stress and strain in anisotropic no-tension materials
Padovani C., Silhavy M.
For an anisotropic no-tension material there exist at least two rotations such that stress and strain become coaxial. The same result holds for any hyperelastic material whose response is expressed in terms of the small strain tensor and whose stress function is a continuous positively homogeneous degree 1 function.Source: MECCANICA, vol. 48 (issue 2), pp. 487-489
DOI: 10.1007/s11012-012-9690-7
Metrics:


See at: Meccanica Restricted | CNR IRIS Restricted | CNR IRIS Restricted | link.springer.com Restricted


2017 Journal article Open Access OPEN
On the derivative of the stress-strain relation in a no-tension material
Padovani C, Silhavý M
The stress-strain relation of a no-tension material, used to model masonry structures, is determined by the nonlinear projection of the strain tensor onto the image of the convex cone of negative-semidefinite stresses under the fourth-order tensor of elastic compliances. We prove that the stress-strain relation is indefinitely differentiable on an open dense subset O of the set of all strains. The set O consists of four open connected regions determined by the rank k = 0, 1, 2, 3 of the resulting stress. Further, an equation for the derivative of the stress-strain relation is derived. This equation cannot be solved explicitly in the case of a material of general symmetry, but it is shown that for an isotropic material this leads to the derivative established earlier by Lucchesi et al. (Int J Solid Struct 1996; 33: 1961-1994 and Masonry constructions: Mechanical models and numerical applications. Berlin: Springer, 2008) by different means. For a material of general symmetry, when the tensor of elasticities does not have the representation known in the isotropic case, only general steps leading to the evaluation of the derivative are described.Source: MATHEMATICS AND MECHANICS OF SOLIDS, vol. 22 (issue 7), pp. 1606-1618
DOI: 10.1177/1081286515571786
Metrics:


See at: ISTI Repository Open Access | Mathematics and Mechanics of Solids Restricted | CNR IRIS Restricted | CNR IRIS Restricted | mms.sagepub.com Restricted


2000 Other Open Access OPEN
Spectral decomposition and strong ellipticity of transversely isotropic elasticity tensors
Padovani C
In questo lavoro si determina la decomposizione spettrale del tensore di elasticità di un materiale iperelastico trasversalmente isotropo.La conoscenza degli autovalori del tensore di elasticità consente di determinare condizioni sulle cinque costanti che caratterizzano il tensore di elasticità, che sono necessarie e sufficienti affinché esso sia definito positivo. Successivamente vengono fornite condizioni necessarie e sufficienti sulle cinque costanti, affinchè il tensore di elasticità sia fortemente ellittico.

See at: CNR IRIS Open Access | CNR IRIS Restricted


2000 Journal article Unknown
On the derivative of some tensor-valued functions
Padovani C
An explicit expression of the derivative of the square root of a tensor is provided, by using the expressions of the derivatives of the eigenvalues and eigenvectors of a symmetric tensor. Starting from this result, the derivatives of the right and left stretch tensor U, V and of the rotation R with respect to the deformation gradient F, are calculated. Expressions for the material time derivatives of U, V and R are also given.Source: JOURNAL OF ELASTICITY, vol. 58 (issue 3), pp. 257-268
DOI: 10.1023/a:1007615519220
Metrics:


See at: Journal of Elasticity Restricted | CNR IRIS Restricted | www.scopus.com Restricted


2000 Journal article Closed Access
On a class of non-linear elastic materials
Padovani C
An abstract is not available.Source: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, vol. 37 (issue 52), pp. 7787-7807
DOI: 10.1016/s0020-7683(99)00307-8
Metrics:


See at: International Journal of Solids and Structures Restricted | CNR IRIS Restricted | www.scopus.com Restricted | www.scopus.com Restricted


1999 Other Open Access OPEN
On the derivative of some tensor-valued functions
Padovani C
An explicit expression of the derivative of the square root of a tensor is provided by using the expressions of the derivatives of the eigenvalues and eigenvectors of the simmetric tensor. Starting from this result, the derivatives of the right and left stretch tensor U, V and of the rotation R with respect to the deformation gradient F, are calculated. Expressions for the material time derivatives of U, V and R are also given.

See at: CNR IRIS Open Access | CNR IRIS Restricted


1999 Other Open Access OPEN
On a class of non-linear elastic materials
Padovani C
An abstract is not available.

See at: CNR IRIS Open Access | CNR IRIS Restricted


1999 Conference article Metadata Only Access
Su una classe di materiali elastici non lineari
Padovani C
An abstract is not available.

See at: CNR IRIS Restricted