[1] R. A. Rydin, “Le verrier's 1859 paper on mercury, and possible reasons for mercury's anomalous precession,” The Gen. Scien., vol. 13, 2009. 1
[2] D. M. Hawkins, Identification of outliers. Springer, 1980, vol. 11. 1
[3] F. Y. Edgeworth, “Xli. on discordant observations,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 23, no. 143, pp. 364-375, 1887. 1
[4] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. AlNemrat, and S. Venkatraman, “Deep learning approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41 525-41 550, 2019. 1
[5] S. Zavrak and M. I˙skefiyeli, “Anomaly-based intrusion detection from network flow features using variational autoencoder,” IEEE Access, vol. 8, pp. 108 346-108 358, 2020. 1
[6] W. Alhakami, A. ALharbi, S. Bourouis, R. Alroobaea, and N. Bouguila, “Network anomaly intrusion detection using a non-parametric bayesian approach and feature selection,” IEEE Access, vol. 7, pp. 52 181-52 190, 2019. 1
[7] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, “Learning temporal regularity in video sequences,” in IEEE CCVPR, 2016, pp. 733-742. 1, 8
[8] R. G. Stafford, J. Beutel et al., “Application of neural networks as an aid in medical diagnosis and general anomaly detection,” Jul. 19 1994, US Patent 5,331,550. 1
[9] T. Fernando, S. Denman, D. Ahmedt-Aristizabal, S. Sridharan, K. R. Laurens, P. Johnston, and C. Fookes, “Neural memory plasticity for medical anomaly detection,” Neural Networks, 2020. 1
[10] K. Ouardini, H. Yang, B. Unnikrishnan, M. Romain, C. Garcin, H. Zenati, J. P. Campbell, M. F. Chiang, J. Kalpathy-Cramer, V. Chandrasekhar et al., “Towards practical unsupervised anomaly detection on retinal images,” in DART. Springer, 2019, pp. 225-234. 1
[11] T. Schlegl, P. Seebo¨ck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative adversarial networks to guide marker discovery,” in ICIPMI. Springer, 2017, pp. 146-157. 1, 2, 6, 7
[12] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling, “Deep learning detecting fraud in credit card transactions,” in SIEDS. IEEE, 2018, pp. 129-134. 1
[13] A. Pumsirirat and L. Yan, “Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine,” IJACSA, vol. 9, no. 1, pp. 18-25, 2018. 1
[14] B. Lebichot, Y.-A. Le Borgne, L. He-Guelton, F. Oble´, and G. Bontempi, “Deep-learning domain adaptation techniques for credit cards fraud detection,” in INNSBDDL. Springer, 2019, pp. 78-88. 1
[15] U. Fiore, A. De Santis, F. Perla, P. Zanetti, and F. Palmieri, “Using generative adversarial networks for improving classification effectiveness in credit card fraud detection,” Information Sciences, vol. 479, pp. 448-455, 2019. 1
[16] K. Tout, F. Retraint, and R. Cogranne, “Automatic vision system for wheel surface inspection and monitoring,” in ASNT Annual Conference 2017, 2017, pp. 207-216. 1
[17] A. Kumar, “Computer-vision-based fabric defect detection: A survey,” IEEE TIE, vol. 55, no. 1, pp. 348-363, 2008. 1
[18] C. C. Aggarwal, “Outlier analysis,” in Data mining. Springer, 2015, pp. 237-263. 1
[19] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv preprint arXiv:1901.03407, 2019. 1
[20] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2017, pp. 665-674. 2
[21] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel, “Memorizing normality to detect anomaly: Memoryaugmented deep autoencoder for unsupervised anomaly detection,” in Proc. ICCV, 2019, pp. 1705-1714. 2, 8
[22] X. Wang, Y. Du, S. Lin, P. Cui, Y. Shen, and Y. Yang, “adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection,” KBS, vol. 190, p. 105187, 2020. 2
[23] T. Schlegl, P. Seebo¨ck, S. M. Waldstein, G. Langs, and U. SchmidtErfurth, “f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks,” MIA, vol. 54, pp. 30-44, 2019. 2
[24] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-supervised anomaly detection via adversarial training,” in ACCV. Springer, 2018, pp. 622-637. 2, 7
[25] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks,” in ICANN. Springer, 2019, pp. 703-716. 2
[26] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems,” Engineering Applications of Artificial Intelligence, vol. 85, pp. 634-644, 2019. 2
[27] N. Pawlowski, M. C. Lee, M. Rajchl, S. McDonagh, E. Ferrante, K. Kamnitsas, S. Cooke, S. Stevenson, A. Khetani, T. Newman et al., “Unsupervised lesion detection in brain CT using bayesian convolutional autoencoders,” 2018. 2
[28] Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “SpecAE: Spectral autoencoder for anomaly detection in attributed networks,” in Proc. CIKM, 2019, pp. 2233-2236. 2
[29] K. Zhou, S. Gao, J. Cheng, Z. Gu, H. Fu, Z. Tu, J. Yang, Y. Zhao, and J. Liu, “Sparse-GAN: Sparsity-constrained generative adversarial network for anomaly detection in retinal OCT image,” in ISBI. IEEE, 2020, pp. 1227-1231. 2
[30] P. C. Ngo, A. A. Winarto, C. K. L. Kou, S. Park, F. Akram, and H. K. Lee, “Fence GAN: towards better anomaly detection,” in ICTAI. IEEE, 2019, pp. 141-148. 2
[31] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, “Adversarially learned one-class classifier for novelty detection,” in Proc. CVPR, 2018, pp. 3379-3388. 2
[32] J. Wang and A. Cherian, “GODS: Generalized one-class discriminative subspaces for anomaly detection,” in Proc. ICCV, 2019, pp. 8201-8211. 2
[33] E. Hong and Y. Choe, “Latent feature decentralization loss for one-class anomaly detection,” IEEE Access, vol. 8, pp. 165 658-165 669, 2020. 2
[34] I. Razzak and T. M. Khan, “One-class support tensor machines with bounded hinge loss function for anomaly detection,” in 2020 Int. Joint Conf. on Neural Networks (IJCNN). IEEE, 2020, pp. 1-8. 2
[35] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, “Efficient GAN-based anomaly detection,” preprint arXiv:1802.06222, 2018. 2, 7
[36] P. Perera, R. Nallapati, and B. Xiang, “OCGAN: One-class novelty detection using GANs with constrained latent representations,” in CVPR, 2019. 2
[37] J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruction probability,” Special Lecture on IE, vol. 2, pp. 1- 18, 2015. 2
[38] D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space autoregression for novelty detection,” in CVPR, 2019, pp. 481-490. 2, 4, 6, 8
[39] P. Bergmann, S. Lo¨we, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsupervised defect segmentation by applying structural similarity to autoencoders,” arXiv preprint arXiv:1807.02011, 2018. 2, 7
[40] C. Huang, J. Cao, F. Ye, M. Li, Y. Zhang, and C. Lu, “Inverse-transform autoencoder for anomaly detection,” preprint arXiv:1911.10676, 2019. 2, 7, 8
[41] B. Scho¨lkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector method for novelty detection,” NeurIPS, pp. 582-588, 2000. 2
[42] D. M. J. Tax and R. P. W. Ruin, “Support vector data description,” Machine Learning, vol. 54, pp. 45-66, 2004. 3
[43] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Mu¨ller, and M. Kloft, “Deep one-class classification,” in Int. Conf. on Machine Learning, 2018, pp. 4393-4402. 3, 5, 6
[44] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “Highdimensional and large-scale anomaly detection using a linear one-class SVM with deep learning,” PR, vol. 58, pp. 121-134, 2016. 3
[45] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using one-class neural networks,” arXiv preprint arXiv:1802.06360, 2018. 3
[46] P. Oza and V. M. Patel, “One class convolutional neural network,” IEEE Signal Processing Letters, vol. 26, no. 2, pp. 277-281, 2019. 3
[47] F. V. Massoli, F. Carrara, G. Amato, and F. Falchi, “Detection of face recognition adversarial attacks,” CVIU, p. 103103, 2020. 3
[48] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning,” arXiv preprint arXiv:1803.04765, 2018. 3
[49] F. Carrara, F. Falchi, R. Caldelli, G. Amato, and R. Becarelli, “Adversarial image detection in deep neural networks,” Multimedia Tools and Applications, vol. 78, no. 3, pp. 2815-2835, 2019. 3
[50] A. Krizhevsky, G. Hinton et al., “The cifar-10 database,” 2009. [Online]. Available: https://www.cs.toronto.edu/ kriz/cifar.html 4, 5, 6, 7
[51] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection,” in Proc. CVPR, 2019, pp. 9592-9600. 4, 5, 6, 7, 8
[52] W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based anomaly detection in stacked RNN framework,” in Proc. ICCV, 2017, pp. 341- 349. 4, 5, 7, 8
[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. 5
[54] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” preprint arXiv:1312.6114, 2013. 6
[55] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves et al., “Conditional image generation with PixelCNN decoders,” in NeurIPS, 2016, pp. 4790-4798. 6
[56] D. Dehaene, O. Frigo, S. Combrexelle, and P. Eline, “Iterative energybased projection on a normal data manifold for anomaly localization,” arXiv preprint arXiv:2002.03734, 2020. 7
[57] M. Sabokrou, M. Pourreza, M. Fayyaz, R. Entezari, M. Fathy, J. Gall, and E. Adeli, “AVID: Adversarial visual irregularity detection,” in ACCV. Springer, 2018, pp. 488-505. 7
[58] F. Carrara, G. Amato, L. Brombin, F. Falchi, and C. Gennaro, “Combining GANs and autoencoders for efficient anomaly detection,” preprint arXiv:2011.08102, 2020. 7
[59] S. Venkataramanan, K.-C. Peng, R. V. Singh, and A. Mahalanobis, “Attention guided anomaly detection and localization in images,” arXiv preprint arXiv:1911.08616, 2019. 7
[60] I. Golan and R. El-Yaniv, “Deep anomaly detection using geometric transformations,” in NeurIPS, 2018, pp. 9758-9769. 7
[61] W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based anomaly detection in stacked RNN framework,” in ICCV, 2017, pp. 341-349. 8
[62] Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X.-S. Hua, “Spatiotemporal autoencoder for video anomaly detection.” New York, NY, USA: ACM MM, 2017, p. 1933-1941. 8
[63] W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction for anomaly detection - a new baseline,” in CVPR, 2018, pp. 6536-6545. 8
[64] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015. 8