Amato G, Bolettieri P, Carrara F, Falchi F, Gennaro C, Messina N, Vadicamo L, Vairo C
Multimedia retrieval Video search Cross-modal search Interactive system
VISIONE is a large-scale video retrieval system that integrates multiple search functionalities, including free text search, spatial color and object search, visual and semantic similarity search, and temporal search. The system leverages cutting-edge AI technology for visual analysis and advanced indexing techniques to ensure scalability. As demonstrated by its runner-up position in the 2023 Video Browser Showdown competition, VISIONE effectively integrates these capabilities to provide a comprehensive video retrieval solution. A system demo is available online, showcasing its capabilities on over 2300 hours of diverse video content (V3C1+V3C2 dataset) and 12 hours of highly redundant content (Marine dataset). The demo can be accessed at https://visione.isti.cnr.it
Publisher: ACM - Association for Computing Machinery
@inproceedings{oai:it.cnr:prodotti:486089, title = {VISIONE: a large-scale video retrieval system with advanced search functionalities}, author = {Amato G and Bolettieri P and Carrara F and Falchi F and Gennaro C and Messina N and Vadicamo L and Vairo C}, publisher = {ACM - Association for Computing Machinery}, doi = {10.1145/3591106.3592226}, year = {2023} }
Amato, Giuseppe
0000-0003-0171-4315
Bolettieri, Paolo
0000-0002-5225-4278
Carrara, Fabio
0000-0001-5014-5089
Falchi, Fabrizio
0000-0001-6258-5313
Gennaro, Claudio
0000-0002-3715-149X
Messina, Nicola
0000-0003-3011-2487
Vadicamo, Lucia
0000-0001-7182-7038
Vairo, Claudio Francesco
0000-0003-2740-4331
Artificial Intelligence for Media and Humanities (2021-ongoing)