1. S. A. Bhatti, Q. Shan, I. A. Glover, R. Atkinson, I. E. Portugues, P. J. Moore, R. Rutherford, Impulsive noise modelling and prediction of its impact on the performance of WLAN receiver, in: Signal Processing Conference, 2009 17th European, IEEE, 2009, pp. 1680-1684.
2. K. L. Blackard, T. S. Rappaport, C. W. Bostian, Measurements and models of radio frequency impulsive noise for indoor wireless communications, IEEE Journal on selected areas in communications 11 (7) (1993) 991-1001.
3. J. Lin, M. Nassar, B. L. Evans, Impulsive noise mitigation in powerline communications using sparse Bayesian learning, IEEE Journal on Selected Areas in Communications 31 (7) (2013) 1172-1183.
4. E. Alsusa, K. M. Rabie, Dynamic peak-based threshold estimation method for mitigating impulsive noise in power-line communication systems, IEEE Transactions on Power Delivery 28 (4) (2013) 2201-2208.
5. T. Y. Al-Naffouri, A. A. Quadeer, G. Caire, Impulsive noise estimation and cancellation in DSL using orthogonal clustering, in: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, IEEE, 2011, pp. 2841-2845.
6. R. Fantacci, A. Tani, D. Tarchi, Impulse noise mitigation techniques for xDSL systems in a real environment, IEEE Transactions on Consumer Electronics 56 (4) (2010) 2106-2114.
7. E. P. Simoncelli, Statistical models for images: Compression, restoration and synthesis, in: Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on, Vol. 1, IEEE Computer Society, 1997, pp. 673-678.
8. A. Achim, P. Tsakalides, A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling, IEEE Transactions on Geoscience and Remote Sensing 41 (8) (2003) 1773-1784.
9. B. Yue, Z. Peng, A validation study of a-stable distribution characteristic for seismic data, Signal Processing 106 (2015) 1-9.
10. P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (4) (1995) 711-732. doi:10.1093/biomet/82.4.711.
11. P. T. Troughton, S. J. Godsill, A reversible jump sampler for autoregressive time series, in: Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, Vol. 4, IEEE, 1998, pp. 2257-2260.
14. S. Richardson, P. J. Green, On Bayesian analysis of mixtures with an unknown number of components (with discussion), Journal of the Royal Statistical Society: series B (statistical methodology) 59 (4) (1997) 731-792.
15. V. Viallefont, S. Richardson, P. J. Green, Bayesian analysis of Poisson mixtures, Journal of nonparametric statistics 14 (1-2) (2002) 181-202.
16. D. Salas-Gonzalez, E. E. Kuruoglu, D. P. Ruiz, Finite mixture of a-stable distributions, Digital Signal Processing 19 (2) (2009) 250-264.
17. O. Karakus¸, E. E. Kuruog˘lu, M. A. Altınkaya, Estimation of the nonlinearity degree for polynomial autoregressive processes with RJMCMC, in: 23rd European Signal Processing Conference (EUSIPCO), IEEE, 2015, pp. 953-957.
18. O. Karakus¸, E. E. Kuruog˘lu, M. A. Altınkaya, Bayesian estimation of polynomial moving average models with unknown degree of nonlinearity, in: 24th European Signal Processing Conference (EUSIPCO), IEEE, 2016, pp. 1543-1547.
19. O. Karakus¸, E. E. Kuruog˘lu, M. A. Altınkaya, Nonlinear Model Selection for PARMA Processes Using RJMCMC, in: 25th European Signal Processing Conference (EUSIPCO), IEEE, 2017, pp. 2110-2114.
20. O. Karakus¸, E. E. Kuruog˘lu, M. A. Altınkaya, Bayesian Volterra System Identification Using Reversible Jump MCMC Algorithm, Signal Processing 141 (2017) 125-136.
21. J. A. Cortes, L. Diez, F. J. Canete, J. J. Sanchez-Martinez, Analysis of the indoor broadband power-line noise scenario, IEEE Transactions on electromagnetic compatibility 52 (4) (2010) 849-858.
22. P. A. Lopes, J. M. Pinto, J. B. Gerald, Dealing with unknown impedance and impulsive noise in the power-line communications channel, IEEE Transactions on power delivery 28 (1) (2013) 58-66.
23. Artemis, SAR solutions, image samples, http://artemisinc.net/media.php (2017).
24. MRI image of brain with gadolinium contrast showing enhancing mass in the right, http://mri-scan-img.info/mri-image-ofbrain-with-gadolinium-contrast-showing-enhancing-mass-in-the-right (2017).
25. C. Martinez Lara, M. Martin Perez, I. Martin Garcia, R. Blanco Herna´ndez, B. Sa´nchez Sa´nchez, J. Sevillano Sa´nchez, Radiological findings invasive lobular carcinoma, in: European Congress of Radiology (ECR), 2012, pp. C-1062. doi:10.1594/ecr2012/C-1062.
26. L. Knorr-Held, G. Raßer, Bayesian detection of clusters and discontinuities in disease maps, Biometrics 56 (1) (2000) 13-21.
27. D. J. Lunn, N. Best, J. C. Whittaker, Generic reversible jump MCMC using graphical models, Statistics and Computing 19 (4) (2009) 395-408.
28. P. Dellaportas, J. J. Forster, Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models, Biometrika 86 (3) (1999) 615-633.
29. F. Van Der Meulen, M. Schauer, H. Van Zanten, Reversible jump MCMC for nonparametric drift estimation for diffusion processes, Computational Statistics & Data Analysis 71 (2014) 615-632.
30. B. Rannala, Z. Yang, Improved reversible jump algorithms for Bayesian species delimitation, Genetics 194 (1) (2013) 245-253.
31. C. S. Oedekoven, R. King, S. T. Buckland, M. L. Mackenzie, K. Evans, L. Burger, Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models, Computational Statistics & Data Analysis 98 (2016) 79-90.
33. W. Hastings, Monte carlo samping methods using markov chains and their applications, Biometrika 57 (1970) 97-109. doi:10.1093/biomet/57.1.97.
34. G. Laguna-Sanchez, M. Lopez-Guerrero, On the use of alpha-stable distributions in noise modeling for PLC, IEEE Transactions on Power Delivery 30 (4) (2015) 1863-1870.
35. E. E. Kuruoglu, W. J. Fitzgerald, P. J. Rayner, Near optimal detection of signals in impulsive noise modeled with a symmetric a-stable distribution, IEEE Communications Letters 2 (10) (1998) 282-284.
36. H. Sadreazami, M. O. Ahmad, M. S. Swamy, A study of multiplicative watermark detection in the contourlet domain using alpha-stable distributions, IEEE Transactions on Image Processing 23 (10) (2014) 4348-4360.
37. N. Farsad, W. Guo, C.-B. Chae, A. Eckford, Stable distributions as noise models for molecular communication, in: Global Communications Conference (GLOBECOM), 2015 IEEE, IEEE, 2015, pp. 1-6.
38. G. Tzagkarakis, P. Tsakalides, Greedy sparse reconstruction of non-negative signals using symmetric alpha-stable distributions, in: Signal Processing Conference, 2010 18th European, IEEE, 2010, pp. 417-421.
39. J. Nolan, Bibliography on stable distributions, processes and related topics, Tech. rep., Technical report (2010).
40. M. N. Do, M. Vetterli, Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance, IEEE transactions on image processing 11 (2) (2002) 146-158.
41. C. Bouman, K. Sauer, A generalized Gaussian image model for edge-preserving MAP estimation, IEEE Transactions on Image Processing 2 (3) (1993) 296-310.
42. G. Verdoolaege, P. Scheunders, Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination, International Journal of Computer Vision 95 (3) (2011) 265-286.
43. S. Le Cam, A. Belghith, C. Collet, F. Salzenstein, Wheezing sounds detection using multivariate generalized Gaussian distributions, in: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, IEEE, 2009, pp. 541-544.
44. M. Novey, T. Adali, A. Roy, A complex generalized Gaussian distribution-Characterization, generation, and estimation, IEEE Transactions on Signal Processing 58 (3) (2010) 1427-1433.
45. A. J. Patton, Modelling asymmetric exchange rate dependence, International economic review 47 (2) (2006) 527-556.
46. R. F. Engle, T. Bollerslev, Modelling the persistence of conditional variances, Econometric reviews 5 (1) (1986) 1-50.
47. A. Aravkin, T. Van Leeuwen, F. Herrmann, Robust full-waveform inversion using the Student's t-distribution, in: SEG Technical Program Expanded Abstracts 2011, Society of Exploration Geophysicists, 2011, pp. 2669-2673.
48. Y. Liang, G. Chen, S. Naqvi, J. A. Chambers, Independent vector analysis with multivariate student's t-distribution source prior for speech separation, Electronics Letters 49 (16) (2013) 1035-1036.
49. T. M. Nguyen, Q. J. Wu, Robust student's-t mixture model with spatial constraints and its application in medical image segmentation, IEEE Transactions on Medical Imaging 31 (1) (2012) 103-116.
50. Z. Zhang, K. Lai, Z. Lu, X. Tong, Bayesian inference and application of robust growth curve models using student's t distribution, Structural Equation Modeling: A Multidisciplinary Journal 20 (1) (2013) 47-78.
51. D. I. Hastie, P. J. Green, Model choice using reversible jump Markov chain Monte Carlo, Statistica Neerlandica 66 (3) (2012) 309-338.
52. R. J. Barker, W. A. Link, Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach, The American Statistician 67 (3) (2013) 150-156.
53. G. A. Tsihrintzis, C. L. Nikias, Fast estimation of the parameters of alpha-stable impulsive interference, IEEE Transactions on Signal Processing 44 (6) (1996) 1492-1503.
54. X. Ma, C. L. Nikias, Parameter estimation and blind channel identification in impulsive signal environments, IEEE transactions on signal processing 43 (12) (1995) 2884-2897.
55. E. E. Kuruoglu, Density parameter estimation of skewed a-stable distributions, IEEE transactions on signal processing 49 (10) (2001) 2192-2201.
56. N. Andreadou, F.-N. Pavlidou, Modeling the noise on the OFDM power-line communications system, IEEE Transactions on Power Delivery 25 (1) (2010) 150-157.
57. T. H. Tran, D. D. Do, T. H. Huynh, PLC impulsive noise in industrial zone: measurement and characterization, International Journal of Computer and Electrical Engineering 5 (1) (2013) 48.
58. S. Kullback, Information theory and statistics, Courier Corporation, 1997.
59. J. R. Hershey, P. A. Olsen, Approximating the Kullback Leibler divergence between Gaussian mixture models, in: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, Vol. 4, IEEE, 2007, pp. IV-317.
60. K. P. Burnham, D. R. Anderson, Model selection and multimodel inference: a practical information-theoretic approach, Springer Science & Business Media, 2003.
61. F. J. Massey Jr, The Kolmogorov-Smirnov test for goodness of fit, Journal of the American statistical Association 46 (253) (1951) 68-78.
62. L. A. Goodman, Kolmogorov-Smirnov tests for psychological research., Psychological bulletin 51 (2) (1954) 160.
63. R. Wilcox, Kolmogorov-Smirnov test, Encyclopedia of biostatistics.
64. J. Wang, W. W. Tsang, G. Marsaglia, Evaluating Kolmogorov's distribution, Journal of Statistical Software 8 (18).
65. W. H. Press, Numerical recipes 3rd edition: The art of scientific computing, Cambridge university press, 2007.
66. L. Tong, J. Yang, R. S. Cooper, Efficient calculation of p-value and power for quadratic form statistics in multilocus association testing, Annals of human genetics 74 (3) (2010) 275-285.
67. M. A. Stephens, Use of the Kolmogorov-Smirnov, Crame´r-Von Mises and related statistics without extensive tables, Journal of the Royal Statistical Society. Series B (Methodological) (1970) 115-122.